

Innovating Energy Technology

High Performance Inverters FRENIC-Ace Series

DRIVE THE NEXT

Since launching in 1992, Fuji's high-performance standard-type inverters have continued to evolve with the times. They strive to meet future market needs through cultivated and reliable inverter technologies.

Evolution history (High-performance standard-type inverters) Representative models: 3-phase 200 V series 0.75 kW

1992

FVR-E7S Original model of high-performance standard types

FVR-E9S Torque vector control, Foreign standards compliant

1999

FVR-E11S Automatic energy saving, PID control and other intelligent functions

FRENIC-Ace E3

6888

2005

Saaa

FRENIC-Multi (FRN-E1) EMC filter, Enhanced networking

FRENIC-Ace (FRN-E2) Customizable logic functions, Two load ratings

FRENIC-Ace (FRN-E3)

5888

Evolving with the times.

The power of the industry's new leading standard.

Inherits and enhances the basic specifications of the E2 Series.

Pursuing maximum performance in the smallest class of inverter body. New finless type and

Ethernet type have been added to the product lineup.

Enjoy better user-friendliness and performance than ever before.

High basic performance

Provides a full range of motor control and enhanced functionality. Supports a wide variety of

networks to realize IoT.

FRENIC-Ace

Extensive lineup

Lineup of 4 types for each power supply voltage.

Supports a wide range of applications from light loads to heavy loads.

SERIES

Easy maintenance

Easy wiring and setup, as well as remote control, for improved work efficiency.

Provides preventive and predictive maintenance functions to ensure safety.

CONTENTS

» Features
High basic performance ······06
Extensive lineup ······08
Easy maintenance · · · · · · 10
»Main application examples ······14
» Model variations ······16
»How to read the inverter ······17 modelerter model

Standard specifications
Three-phase 200 V series ······1
Three-phase 400 V series ······2
Single-phase 200 V series ······2
»Common specifications2
» Terminal features 3
»Basic wiring diagram ······3
»External dimensions3

Keypad functions	
» Keypad operation	
» Function codes	
» Options	
Product warranty	

High basic performance

Provides a full range of motor control and enhanced functionality. Supports a wide variety of networks to realize IoT.

Faster operating speeds

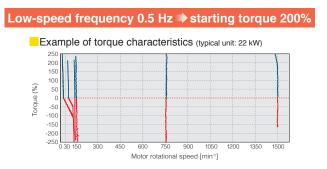
Increases the maximum output frequency of all control systems to 599 Hz and supports applications that require high-speed rotation and minimal speed and torque fluctuations.

Frequency [Hz]	100 20	0 300	400	500	599H
V/f control				500	
High-speed sensor-equipped vector control	200				
High-speed sensorless vector control	120				

599 Hz.

Can be used with any motor

Improves speed control range to stabilize torque at low speeds. Enables multi-drive with our induction and synchronous motors, as well as other company motors.

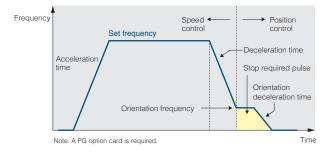

Speed control range

	V/f control	Minimum speed	1:20	Base speed
	During sensor-equipped 1 V/f control*	Constant torque region	1:2	Constant output region
		Minimum speed	1:20	Base speed
×		Constant torque region	1:2	Constant output region
Induction motor	Dynamic torque vector control	Minimum speed	imum speed 1:200	
u u	Dynamic torque vector control	Constant torque region	1:2	Constant output region
ctio	During sensor-equipped	Minimum speed	1:200	Base speed
npr	Dynamic torque vector control*	Constant torque region	1:2	Constant output region
-	During sensorless	Minimum speed	1:200	Base speed
	vector control	Constant torque region	1:2	Constant output region
	During sensor-equipped	Minimum speed	1:1500	Base speed
	vector control*	Constant torque region	1:2	Constant output region
د د د	During sensorless vector control	Minimum speed	1:10	Base speed
Synchro- nous motors	During sensor-equipped NEW	Minimum speed	1:1500	Base speed

Note) Sensor-equipped control needs to install the PG option card

Advanced dynamic torque vector control

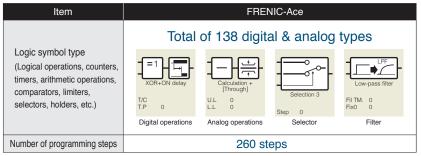
Enhances our proprietary dynamic torque vector control with new motor constant tuning (that takes into account the voltage of the main circuit) and newly designed magnetic flux observer.

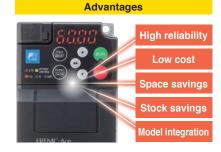


etc

Premium efficiency motors Various synchronous motors

Capable of rotator positioning, enabling machinery to be held in place via servo locking after stoppage.



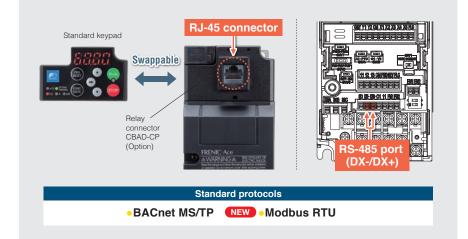


Customizable logic functions

Customizable inverter functions to meet your own specific needs. Requires no PLC or external control equipment (relays, timers, etc.) circuits, and can be configured simply by setting and combining various parameters inside the inverter.

Comes with a wide variety of logic symbols and programming steps

* Programming available with FRENIC-Loader4.


06

Enhanced network functions

Expands supported networks, contributing to reduced equipment wiring and data linkage.

Standard

RS-485 port (DX-/DX+) provided separately from the main unit port (RJ-45 connector). Supports two protocols (Modbus RTU and BACnet MS/TP) using these connections.

Option cards are available to connect to various internationally-popular industrial protocols.

Option

Optional protocols
• EtherNet/IP NEW
• PROFINET NEW
Modbus TCP NEW
 DeviceNet
• PROFIBUS-DP
•CC-Link
 CANopen

Features

7 Side-by-side installation

Enables side-by-side installation and use at full capacity when multiple inverters are arranged in a panel. Saves space via compact control panel design.

E.g., 3-phase 200 V series 0.75 kW

Note) Equivalent to conventional E2 Series.

Note) Install them so that vibration, impact, installation tolerance are taken into consideration. Please note that side-by side installation can cause problems in removing the adapter for the keypad option

Extensive lineup

Lineup of 4 types for each power supply voltage. Supports a wide range of applications from light loads to heavy loads.

Wide range of power supply voltages and capacity expansion NEW

Supports wide range of inverter power supply specifications, including 3-phase 200 V series / 400 V series and single-phase 200 V series. Available in capacities up to 22 kW (HHD), a finless type and an Ethernet type have been added to the lineup.

Newly added to the lineup were the single-phase, 200 V, high carrier frequency normal duty (HND) type. Delivering a higher current rating for some 400 V series, models in a wide range of capacities are selectable depending on the applications. Note 1) See the bottom of the page for details.

Capacity [kW] (HHD) 0.1 0.2 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 3-phase 200 V series Basic type [E3S] 3-phase 400 V series Single-phase 200 V series 3-phase 200 V series EMC filter type [E3E] Note 3-phase 400 V series Single-phase 200 V series 3-phase 200 V series NEW 3-phase 400 V series Ethernet type [E3N] Single-phase 200 V series 3-phase 200 V series NEW Finless type [E3T] Note 2 3-phase 400 V series Single-phase 200 V series Note 3) Three-phase 200 V series differs in specifications. For details, consult our sales representatives

Ethernet type

>> Reduces tact time

Reduces tact time for setting, updating, and monitoring via the Internet

Shortens wiring work and reduces wiring

Shortens wiring time and reduces wiring for conventional control signals DI/DO and AI/AO. Compact installation without requiring option cards.

» Compatible with 24 V power supplies

External 24 V power supply input enables checking communication establishment prior to system start-up.

Note) I/O interface is inoperative

Note) This type does not support the use of option cards

Finless type

Space savings

Absence of cooling fins enables more compact and efficient installation of control panels and equipment.

note) This type requires the customer to design and construct the cooling system. E.g., Combination with commercially available cooling fins and water-cooled jackets

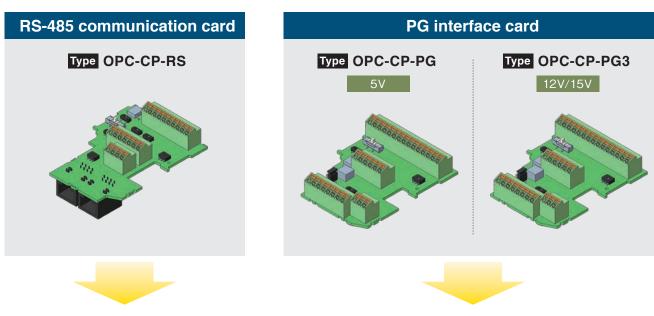
Note 2) For details on the finless type, refer to the FRENIC-Ace Finless type catalog (24A1-E-0185) or consult our sales representatives.

Depth dimension (D) comparison *Three-phase 200 V series

Capacity [kW] Finless type		Basic type
0.1, 0.2	96mm(–2mm)	98mm
0.4	96mm(–17mm)	113mm
0.75	103mm(–42mm)	145mm
1.5 to 3.7	111mm(–45mm)	156mm

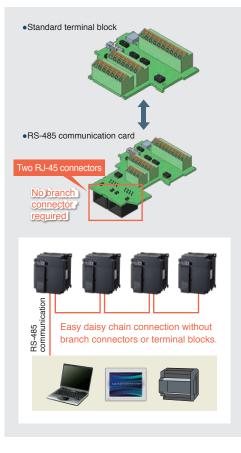
Standard applicable motor [kW]	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
FRENIC-Ace(E3)	1.8	3.4	4.8	5.5	9.2	14.8	18	24	31	39	45
FRENIC-Ace(E2)	1.5	2.5	4.2	5.5	9	13	18	24	30	39	45

Note 1) Three-phase 400 V series rated current [A] HHD specification


1.00

20

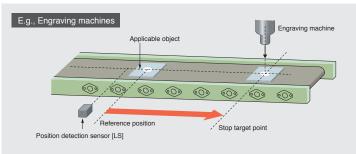
Expansion of functions by replacing control terminal board Option


Available in 3 types of terminal boards as options, enabling application-specific connection and I/O function expansion. Note 1)

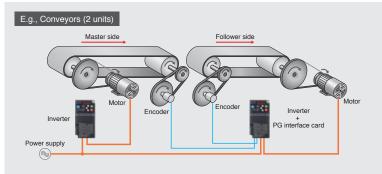
Multidrop connections

17

Easy connection by replacing the standard terminal board with two RS-485 port connectors (RJ-45).



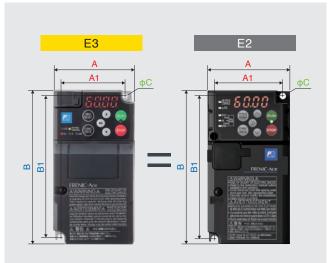
Note 1) For types with built-in Ethernet, the control terminal board cannot be replaced.


PG signal/pulse signal connection

Supports motor PG signal connection during sensor V/F control and sensor vector control, positioning, and master/follower (synchronous) operation.

Positioning operation

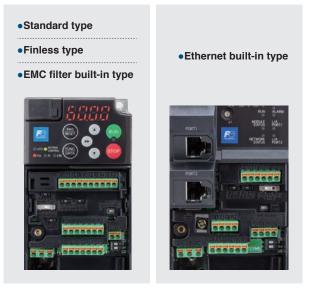
•Master/follower (synchronous) operation



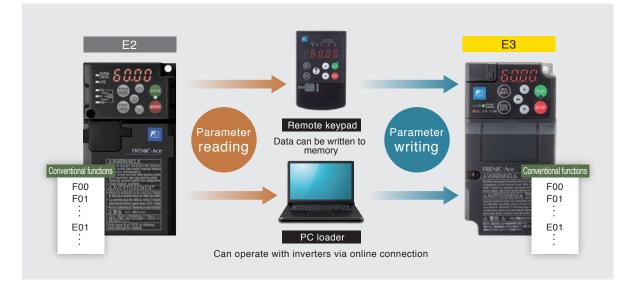
Easy maintenance

Easy wiring and setup, as well as remote control, for improved work efficiency. Provides preventive and predictive maintenance functions to ensure safety.

Same mounting dimensions

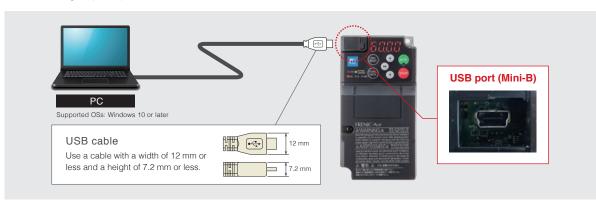

Compatible inverter body mounting dimensions. *Enables conventional E2 Series replacement and installation.

Note) The depth dimension (D) is larger than the E2 Series, so please check the outline drawing.


2 Simple wiring

Features a push-in terminal block for the control terminal block to dramatically improve wiring workability.

Easy parameter migration


Compatibility mode allows parameters read from the previous model to be written directly to the E3 Series.

Enhanced PC loader functions

Comes standard with a USB port (Mini-B) for direct communication between the inverter and a PC. Parameters can be written to and read from the inverter using only bus power.

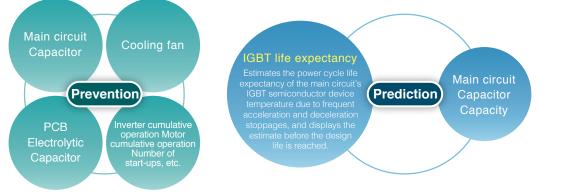
Accessible on mobile devices

S Option

Remote multi-function keypad (optional) enables Bluetooth communication from a smartphone or tablet to read parameters and monitor operating conditions.

6 Enhances alarm history and traceback functions

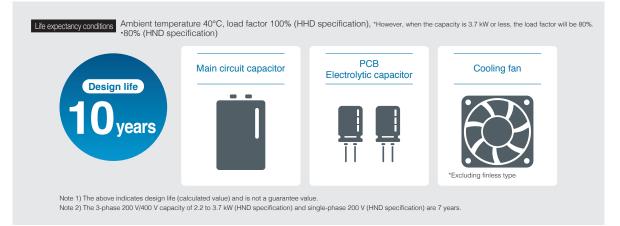
Alarm history can save and display data for the past 10 alarms.

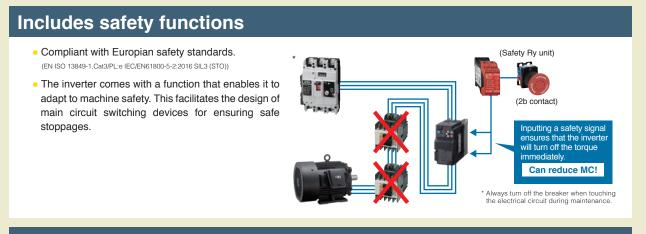

Detailed data such as output frequency and output current for the most recent 4 alarms

	No.
1	* Inverter
1	* Keypad
100	* SD card
	1 1 100

* The numbers above indicate the number of tracebacks.

7 Life expectancy diagnosis and maintenance functions

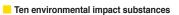

The keypad and PC loader make it easy to check the status of equipment and detect problems before they occur, helping to reduce production equipment maintenance time and downtime.


Features

Long life expectancy (main components)

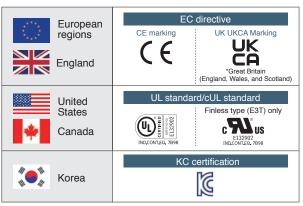
Many of the serviceable parts inside the inverter have been designed to meet customer equipment maintenance cycles.

Other safety and environmental considerations


Improves environmental resistance

 Further strengthens PCB coating IEC60721-3-3/Class 3C2

Note) Salt-resistant products, etc., can be manufactured to order.


Revised European RoHS Directive

- Lead
- Mercury
- Cadmium
- Hexavalent chromiumPolybrominated biphenyl (PBB)
- Polybrominated diphenyl (PBDE)
- Di-2-ethylhexyl phthalate (DEHP)
- Butyl benzyl phthalate (BBP)
- Di-n-butyl phthalate (DBP)
- Diisobutyl phthalate (DIBP)

Compliant with overseas safety standards.

RoHS

ΜΕΜΟ	
	1
	1
	1

Major applications

Widely used in a variety of general and specialized applications.

Conveyors

» Dynamic torque vector control

High starting torque enables smooth transport of large loads and heavy objects.

>> Multi-stage frequency driving and analog speed setting

External switches and volume control make it easy to set the driving speed.

» CC-Link communication

CC-Link connectivity is available as an option and can be used in the same networks that support CC-Link-compatible products.

Fans and pumps

>> BACNet MS/TP protocol

Supports the BACNet MS/TP protocol used in building automation, providing direct connection to building networks.

» Automatic energy-saving operation

Automatically operates to minimize inverter and motor loss, contributing to equipment energy savings.

>> Multi-drive operation

To further improve energy efficiency of machinery and equipment, it enables replacing induction motor-driven systems with synchronous motors without changing inverters.

Compressors

>> Sensorless vector control

Drives high-speed motors and synchronous motors up to 599 Hz, contributing to equipment miniaturization and energy savings.

Food processing machines

>> High ambient temperatures

Capable of operating at ambient temperatures up to 55°C in high-temperature environments.

Note) Derating is required when using it at 50°C or higher.

Stable operating speed

Enables stable operation speeds using slip compensation control.

ard Type number itions nomenclature val

Commercial washing machines

» Current limiting

Accelerates while preventing stalling even when laundry is still wet immediately after spinning and draining starts.

» Dynamic torque vector control

Capable of smooth starting at low speeds relative to high starting torque.

>> Speed setting

Enables optimum acceleration and deceleration by setting the acceleration and deceleration times.

Press machines

» High-speed responsiveness

Supports the speed sensorless vector of induction motors and ensures constant rotational speed even with load fluctuations, thus stabilizing quality.

» Regeneration avoidance control

Suppresses regenerative energy and ensures continuous operation.

» Built-in braking transistor

Capable of operating in high-load regenerative mode with only a braking resistor.

Hoist cranes

» Customization logic

Enables load-specific automatic double-speed operation by combining a wide variety of digital and analog operation blocks.

» Sensor vector control support

Provides stable lifting and lowering even at low speeds.

>> Torque bias control

Supports smooth start-up compensation during lifting and lowering by externally adding load variations to torque commands.

Stacker cranes

» Brake release signal

Prevents the cargo bed from sliding down or overrunning by using operating condition-based inverter brake signals.

>> Predictive maintenance (IGBT life expectancy)

Detects inverter damage in advance by estimating the power cycle life of IGBT element temperatures, thus contributing to shorter system downtimes.

Model Variations

ND (Normal Duty)-mode inverters for general load : 120% for 1 minute

HD (High Duty)-mode inverters for heavy load : 150% for 1 minute

HND (High, Normal Duty)-mode inverters for high carrier frequency, general load : 120% for 1 minute

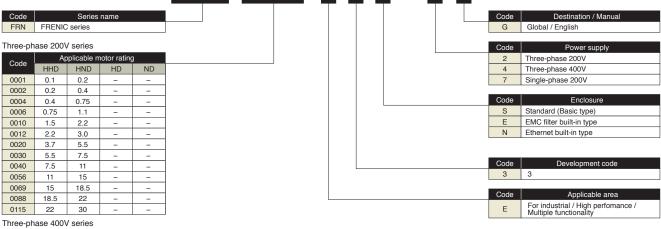
HHD (High, Heavy Duty)-mode inverters for high carrier frequency, heavy load : 150% for 1 minute, 200% for 0.5 seconds

Model list

Basic type								
Standard applicable motor	3-phase 400 V series	3-phase 200 V series	1-phase 200 V series					
kW (HP)	ND HD HND HHD	HND HHD	HND HHD NEW					
0.1(1/8)		FRN0001E3S-2G	FRN0001E3S-7G					
0.2(1/4)		(FRN0001E3S-2G)(FRN0002E3S-2G)-	FRN0001E3S-76 FRN0002E3S-76					
0.4(1/2)	FRN0002E3S-4G	(FRN0002E3S-2G)(FRN0004E3S-2G)-	(FRN0002E3S-7G) (FRN0004E3S-7G)					
0.55(3/4)			(FRN0004E3S-7G)					
0.75(1)	-(FRN0002E3S-4G)(FRN0002E3S-4G)(FRN0002E3S-4G)(FRN0004E3S-4G)	(<u>FRN0004E3S-2G</u>)(<u>FRN0006E3S-2G</u>)-	(FRN0006E3S-7G)					
1.1(1.5)	FRN0004E3S-4G (FRN0004E3S-4G)	(FRN0006E3S-2G)	(FRN0006E3S-7G)					
1.5(2)	(FRN0004E3S-4G) (FRN0006E3S-4G)	(FRN0010E3S-2G)	(FRN0010E3S-7G)					
2.2(3)	-(<u>FRN0006E3S-4G</u>)(<u>FRN0006E3S-4G</u>)(<u>FRN0006E3S-4G</u>)(<u>FRN0007E3S-4G</u>)	-(<u>FRN0010E3S-2G</u>)(<u>FRN0012E3S-2G</u>)-	(FRN0010E3S-7G)(FRN0012E3S-7G)					
3.0(4)	(FRN0007E3S-4G)(FRN0007E3S-4G)(FRN0007E3S-4G)	-(FRN0012E3S-2G)	(FRN0012E3S-7G)					
3.7(5)	(FRN0012E3S-4G)	(FRN0020E3S-2G)						
5.5(7.5)	(FRN0012E3S-4G) (FRN0012E3S-4G) (FRN0012E3S-4G) (FRN0022E3S-4G)	-(FRN0020E3S-2G)(FRN0030E3S-2G)						
7.5(10)	(FRN0022E3S-4G)(FRN0022E3S-4G)(FRN0029E3S-4G)	-(FRN0030E3S-2G)(FRN0040E3S-2G)						
11(15)	-(<u>FRN0022E3S-4G</u>)(<u>FRN0029E3S-4G</u>)(<u>FRN0029E3S-4G</u>)(<u>FRN0037E3S-4G</u>)	-(FRN0040E3S-2G)(FRN0056E3S-2G)						
15(20)	-(FRN0029E3S-4G)(FRN0037E3S-4G)(FRN0037E3S-4G)(FRN0044E3S-4G)	-(FRN0056E3S-2G)(FRN0069E3S-2G)						
18.5(25)	-(<u>FRN0037E3S-4G</u>)(<u>FRN0044E3S-4G</u>)(<u>FRN0044E3S-4G</u>)(<u>FRN0059E3S-4G</u>)	-(FRN0069E3S-2G)(FRN0088E3S-2G)						
22(30)	-(FRN0044E3S-4G)(FRN0059E3S-4G)(FRN0059E3S-4G)(FRN0072E3S-4G)	-(FRN0088E3S-2G)(FRN0115E3S-2G)						
30(40)	(FRN0059E3S-4G)(FRN0072E3S-4G)(FRN0072E3S-4G)	-(FRN0115E3S-2G)						
37(50)	-(FRN0072E3S-4G)							

EMC filter built-in type Note

Standard applicable motor	3-phase 400 V series	1-phase 200 V series
kW (HP)	ND HD HND HHD	HHD
0.1(1/8)		FRN0001E3E-7G
0.2(1/4)		FRN0002E3E-7G
0.4(1/2)	FRN0002E3E-4G	FRN0003E3E-7G)
0.75(1)	FRN0002E3E-4G) (FRN0002E3E-4G) (FRN0002E3E-4G) (FRN0004E3E-4G)	FRN0005E3E-7G)
1.1(1.5)	FRN0004E3E-4G) FRN0004E3E-4G	
1.5(2)	(FRN0004E3E-4G) (FRN0006E3E-4G)	FRN0008E3E-7G)
2.2(3)	FRN0006E3E-4G) (FRN0006E3E-4G) (FRN0006E3E-4G) (FRN0007E3E-4G)	FRN0011E3E-7G
3.0(4)	FRN0007E3E-4G) (FRN0007E3E-4G) (FRN0007E3E-4G)	
3.7(5)	(FRN0012E3E-4G)	
5.5(7.5)	FRN0012E3E-4G) (FRN0012E3E-4G) (FRN0012E3E-4G) (FRN0022E3E-4G)	
7.5(10)	FRN0022E3E-4G) FRN0022E3E-4G) FRN0029E3E-4G)	
11(15)	FRN0022E3E-4G) (FRN0029E3E-4G) (FRN0029E3E-4G) (FRN0037E3E-4G)	
15(20)	FRN0029E3E-4G) (FRN0037E3E-4G) (FRN0037E3E-4G) (FRN0044E3E-4G)	
18.5(25)	FRN0037E3E-4G) (FRN0044E3E-4G) (FRN0044E3E-4G) (FRN0059E3E-4G)	
22(30)	FRN0044E3E-4G) FRN0059E3E-4G) FRN0059E3E-4G) FRN0072E3E-4G)	
30(40)	FRN0059E3E-4G) FRN0072E3E-4G) FRN0072E3E-4G)	
37(50)	FRN0072E3E-4G	


NEW Ethernet built-in type

Standard applicable motor	3-phase 400 V series	3-phase 200 V series	1-phase 200 V series
kW (HP)	ND HD HND HHD	HND HHD	HND HHD
0.1(1/8)		FRN0001E3N-2G	FRN0001E3N-7G
0.2(1/4)		-(FRN0001E3N-2G) (FRN0002E3N-2G)-	-(FRN0001E3N-7G)(FRN0002E3N-7G)
0.4(1/2)	FRN0002E3N-4G	-(FRN0002E3N-2G) (FRN0004E3N-2G)-	FRN0002E3N-76 FRN0004E3N-76
0.55(3/4)			-(FRN0004E3N-7G)
0.75(1)	-(FRN0002E3N-4G) (FRN0002E3N-4G) (FRN0002E3N-4G) (FRN0004E3N-4G)-	-(FRN0004E3N-2G) (FRN0006E3N-2G)-	FRN0006E3N-7G
1.1(1.5)	FRN0004E3N-4G FRN0004E3N-4G	(FRN0006E3N-2G)	-(FRN0006E3N-7G)
1.5(2)	FRN0004E3N-4G FRN0006E3N-4G	FRN0010E3N-2G	FRN0010E3N-7G
2.2(3)		-(FRN0010E3N-2G) FRN0012E3N-2G)-	FRN0010E3N-7G FRN0012E3N-7G
3.0(4)	-(FRN0007E3N-4G)(FRN0007E3N-4G)(FRN0007E3N-4G)	FRN0012E3N-2G	- FRN0012E3N-7G
3.7(5)	FRN0012E3N-4G	FRN0020E3N-2G	
5.5(7.5)	-(FRN0012E3N-4G)(FRN0012E3N-4G)(FRN0012E3N-4G)(FRN0022E3N-4G)-	FRN0020E3N-2G FRN0030E3N-2G	
7.5(10)	FRN0022E3N-4G (FRN0022E3N-4G) (FRN0029E3N-4G)	FRN0030E3N-2G FRN0040E3N-2G	
11(15)	-(FRN0022E3N-4G)(FRN0029E3N-4G)(FRN0029E3N-4G)(FRN0037E3N-4G)-	FRN0040E3N-2G) FRN0056E3N-2G	
15(20)	-(FRN0029E3N-4G)(FRN0037E3N-4G)(FRN0037E3N-4G)(FRN0044E3N-4G)-	FRN0056E3N-2G FRN0069E3N-2G	
18.5(25)	- FRN0037E3N-4G FRN0044E3N-4G FRN0044E3N-4G FRN0059E3N-4G -	FRN0069E3N-2G FRN0088E3N-2G	
22(30)	- FRN0044E3N-4G FRN0059E3N-4G FRN0059E3N-4G FRN0072E3N-4G -	FRN0088E3N-2G FRN0115E3N-2G	
30(40)	FRN0059E3N-4G FRN0072E3N-4G FRN0072E3N-4G	FRN0115E3N-2G	
37(50)	FRN0072E3N-4G		

Note) Three-phase 200 V series differs in specifications. For details, consult our sales representatives.

How to read the inverter modelerter model

FRN 0001 E 3 S 2 G

Code	Ap	Applicable motor rating									
Code	HHD	HND	HD	ND							
0002	0.4	0.75	0.75	0.75							
0004	0.75	1.1	1.1	1.5							
0006	1.5	2.2	2.2	2.2							
0007	2.2	3	3	3							
0012	3.7	5.5	5.5	5.5							
0022	5.5	7.5	7.5	11							
0029	7.5	11	11	15							
0037	11	15	15	18.5							
0044	15	18.5	18.5	22							
0059	18.5	22	22	30							
0072	22	30	30	37							

Single-phase 200V series

Code	Applicable motor rating										
Code	HHD	HND	HD	ND							
0001	0.1	0.2	-	-							
0002 0.2 0.4											
0004	0.4	0.55	-	-							
0006	0.75	1.1	-	-							
0010	1.5	2.2	-	-							
0012 2.2 3.0											

Single-phase 200V series (EMC filter build-in type)

Code	Appl	Applicable motor rating [kW]							
Code	HHD	HND	HD	ND					
0001	0.1	-	-	-					
0002	0.2	-	-	-					
0003	0.4	-	-	-					
0005	0.75	-	-	-					
0008	1.5	-	-	-					
0011	2.2	-	-	-					

Model variations

Standard specifications

Three-phase 200V

Basic type

ltem			Specific	ation											
Type(FRN	S-2G)		0001	0002	0004	0006	0010	0012 *9	0020 *9	0030	0040	0056	0069	0088	0115
	ннр	kW	0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
Standard applicable		HP	1/8	1/4	1/2	1	2	3	5	7.5	10	15	20	25	30
notor *1	HND	kW	0.2	0.4	0.75	1.1	2.2	3	5.5	7.5	11	15	18.5	22	30
		HP	1/4	1/2	1	1.5	3	4	7.5	10	15	20	25	30	40
Rated capacity [k	VA1 *2	HHD	0.4	0.6	1.1	1.9	3	4.2	6.7	9.5	13	18	23	29	34
	-	HND	0.5	0.8	1.3	2.3	3.7	4.6	7.5	11	15	21	26	34	44
Rated voltage [V]	*3	1		hase 200	1	ů –	1	í							
Rated current [A]	*4	HHD	1	1.6	3	5	8	11	17.5	25	33	47	60	76	90
s6		HND	1.3	2	3.5	6	9.6	12	19.6	30	40	56	69	88	115
Overload current		HHD		r 1 minute		or 0.5 sec	conds								
(permissible over	oad time)	HND		r 1 minute								-			
Overload current (permissible over		HHD	(current	55 °C [14 derating	necessar	- 'y in +50 t	to +55 ℃	[122 to 1	31 °F] rai	nge)					
Ambient tempera	ture	HND	(current Type of	55 °C [14 derating 0012 to 0 derating i	necessai 020 -10 1	ry in +50 t to +50 ℃	[14 to 12	2°F]		0 /					
Rated frequency	[Hz]		50 / 60 H	Ηz											
Voltage, frequenc	y		Three-pl	hase 200	to 240 V,	50/60 Hz	:								
Voltage, frequenc	y fluctuation			+10 to -1 cy: +5 to		phase un	balance r	atio: 2%	or less) *8	3,					
	With	HHD	0.57	0.93	1.6	3	5.7	8.3	14	21.1	28.8	42.2	57.6	71	84.4
	*F DCR	HND	0.93	1.6	3	4.3	8.3	11.7	19.9	28.8	42.2	57.6	71	84.4	114
E Rated current [A]	Without	HHD	1.1	1.8	3.1	5.3	9.5	13.2	22.2	31.5	42.7	60.7	80.1	97	112
Rated current [A]	DCR	HND	1.8	2.6	4.9	6.7	12.8	17.9	28.5	42.7	60.7	80.1	97	112	151
Required power s	upply	HHD	0.2	0.4	0.6	1.1	2	2.9	4.9	7.3	10	15	20	25	30
capacity (with DC	R) [kVA] *6	HND	0.4	0.6	1.1	1.5	2.9	4.1	6.9	10	15	20	25	30	40
Auxiliary control p	ower supply	voltage						-						Single 200 to 50/6	
Torquo *7		HHD	15	0%	10	0%	70%	40)%			20)%		
Torque *7		HND	75	5%	53%	68%	48%	29%	27%			15	5%		
Braking transistor			Built-in				·	•							
Braking transistor	stance value	[Ω]		100 t	o 120		40 to	0 120	33 to 120	20 min.	15 min.	10 min.	8.6 min.	m	4 in.
Braking resistor [Ω]		Option												
DC reactor (DCR)			Option												
Protective construction	n (IEC 60529))	IP20 end	closed typ	e, UL op	en type									
Cooling system			Natural	cooling			Fan cool	ing							
Veight [kg(lbs)]			0.5 (1.1)	0.5 (1.1)	0.6 (1.3)	0.8 (1.8)	1.4 (3.1)	1.4 (3.1)	1.7 (3.7)	3.8 (8.4)	4 (8.8	5.3 (12)	5.4 (12)	11 (24)	12 (26
I) Standard applicable m	otor indicates I	uii Electric	4-pole stan	dard motors	. Select a	motor not c	nlv based o	on inverter	output (kW), but also	so that the	output rate	d current is	greater that	n the

(*1) Standard applicable motor indicates Fuji Electric 4-pole standard motors. Select a motor not only based on inverter output (kW), but also so that the output rated current is greater than the motor rated current.
(*2) The rated capacity indicates 220 V for the 200V series, and 440 V for the 400V series.
(*3) It is not possible to output a voltage higher than the power supply voltage.
(*4) Setting the carrier frequency (F26) to the following value or above requires current derating. HHD spec. of types FRN0001E3_2G to FRN0020E3_2G ; 8 kHz, FRN0030E3_2G to FRN0115E3_2G; 10 kHz HND spec. of types FRN0001E3_2G to FRN0020E3_2G ; 4 kHz, FRN0030E3_2G to FRN0088E3_2G; 10 kHz, FRN0115E3_2G to FRN0001E3_2G to FRN0020E3_2G ; 4 kHz, FRN0030E3_2G to FRN0088E3_2G; 10 kHz, FRN0115E3_2G to KHZ
(*5) This indicates the estimated value if the power supply capacity is 500 kVA (10 times inverter capacity if inverter capacity exceeds 50 kVA), and the motor is connected to a power supply of %X = 5%.
(*6) This indicates the capacity when the motor is equipped with a DC reactor (DCR).
(*7) This is the average braking torque when performing individual operation. (This will vary based on the motor efficiency.)
(*8) Interphase unbalance ratio [%] = (Max. voltage [V] - min. voltage [V]/Three-phase average voltage [V] x 67 (see IEC/EN 61800-3). If using the motor with an unbalance ratio of 2 to 3%, use an AC reactor (ACR: option).
(*9) For FRN0012/0020E38-2G, FRN0012/0020E3N-2G HND specifications, If the ambient temperature is 40°C or higher, the output current must be derated by 1%/°C.

18 FRENIC-Ace High performance Standard type Inverter

High performance Standard type Inverter

RFN

Ethernet built-in type

lten	n			Specific	ation											
Тур	e(FRN E3N-2	2G)		0001	0002	0004	0006	0010	0012 *9	0020 *9	0030	0040	0056	0069	0088	0115
		ннр	kW	0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
Star	ndard applicable	ппи	HP	1/8	1/4	1/2	1	2	3	5	7.5	10	15	20	25	30
mot	or *1	HND	kW	0.2	0.4	0.75	1.1	2.2	3	5.5	7.5	11	15	18.5	22	30
			HP	1/4	1/2	1	1.5	3	4	7.5	10	15	20	25	30	40
	Rated capacity [kVA]	*0	HHD	0.4	0.6	1.1	1.9	3	4.2	6.7	9.5	13	18	23	29	34
		2	HND	0.5	0.8	1.3	2.3	3.7	4.6	7.5	11	15	21	26	34	44
	Rated voltage [V] *3			Three-ph			````	R function)							
	Rated current [A] *4		HHD	1	1.6	3	5	8	11	17.5	25	33	47	60	76	90
gs			HND	1.3	2	3.5	6	9.6	12	19.6	30	40	56	69	88	115
atin	Overload current ratio		HHD	-		e, 200% fo	or 0.5 see	conds								
ut ra	(permissible overload	d time)	HND		r 1 minute											
Output ratings			HHD	(current	derating		y in +50 i	to +55 °C	[122 to 1	31 °F] rar	nge)					
	Ambient temperature	I	HND	(current Type of (derating 0012 to 00	020 -10 t	, y in +50 ⊧ o +50 °C	to +55 °C [14 to 12 o +50 °C	2°F]	-	•					
	Rated frequency [Hz]	1		50 / 60 H	lz				-							
	Voltage, frequency	-		Three-ph	nase 200	to 240 V,	50/60 Hz	2								
	Voltage, frequency flu	uctuation			+10 to -1 cy: +5 to		phase un	balance r	atio: 2% o	or less) *8	3,					
		With	HHD	0.57	0.93	1.6	3	5.7	8.3	14	21.1	28.8	42.2	57.6	71	84.4
Jgs	Rated current [A] *5	DCR	HND	0.93	1.6	3	4.3	8.3	11.7	19.9	28.8	42.2	57.6	71	84.4	114
ratii	Haleu current [A] 5	Without	HHD	1.1	1.8	3.1	5.3	9.5	13.2	22.2	31.5	42.7	60.7	80.1	97	112
Input ratings		DCR	HND	1.8	2.6	4.9	6.7	12.8	17.9	28.5	42.7	60.7	80.1	97	112	151
ď	Required power supp		HHD	0.2	0.4	0.6	1.1	2	2.9	4.9	7.3	10	15	20	25	30
	capacity (with DCR) [[kVA] *6	HND	0.4	0.6	1.1	1.5	2.9	4.1	6.9	10	15	20	25	30	40
	Auxiliary control power	er supply	voltage						-							phase 240 V, 0 Hz
	Torque *7		HHD	150	0%	10	0%	70%	40)%			20)%		
5	Torque 7		HND	75	5%	53%	68%	48%	29%	27%			15	5%		
kinç	Braking transistor			Built-in												
Braking	Connectable resistan	ice value	[Ω]		100 te	o 120		40 to	120	33 to 120	20 min.	15 min.	10 min.	8.6 min.	 mi	
	Braking resistor [Ω]			Option												
DC	reactor (DCR)			Option												
Prot	tective construction (IE	EC 60529)	IP20 end	losed typ	e, UL ope	en type									
Coo	oling system			Natural c	cooling			Fan cool	ing							
Wei	ght [kg(lbs)]			0.5 (1.1)	0.5 (1.1)	0.7 (1.5)	0.9 (2.0)	1.4 (3.1)	1.4 (3.1)	1.7 (3.7)	3.8 (8.4)	4 (8.8)	5.3 (12)	5.4 (12)	11 (24)	12 (26)
	Standard applicable motor															

(*1) Standard applicable motor indicates Fuji Electric 4-pole standard motors. Select a motor not only based on inverter output (kW), but also so that the output rated current is greater than the

(*1) Standard applicable motor indicates Fuji Electric 4-pole standard motors. Select a motor not only based on inverter output (kW), but also so that the output rated current is greater than the motor rated current.
(*2) The rated capacity indicates 220 V for the 200V series, and 440 V for the 400V series.
(*3) It is not possible to output a voltage higher than the power supply voltage.
(*4) Setting the carrier frequency (F26) to the following value or above requires current derating. HHD spec. of types FRN0001E3_2G to FRN0020E3_-2G : 8 kHz, FRN0030E3_-2G to FRN0115E3_-2G; 10 kHz HND spec. of types FRN0001E3_2G to FRN0020E3_-2G : 4 kHz, FRN0030E3_-2G to FRN0088E3_-2G; 10 kHz, FRN0115E3_-2G; 6 kHz
(*5) This indicates the estimated value if the power supply capacity is 500 kVA (10 times inverter capacity if inverter capacity exceeds 50 kVA), and the motor is connected to a power supply of %X = 5%.
(*6) This indicates the capacity when the motor is equipped with a DC reactor (DCR).
(*7) This is the average braking torque when performing individual operation. (This will vary based on the motor efficiency.)
(*8) Interphase unbalance ratio [%] = (Max. voltage [V] - min. voltage [V]/Three-phase average voltage [V] x 67 (see IEC/EN 61800-3). If using the motor with an unbalance ratio of 2 to 3%, use an AC reactor (ACR: option).
(*9) For FRN0012/0020E3S-2G, FRN0012/0020E3N-2G HND specifications, If the ambient temperature is 40°C or higher, the output current must be derated by 1%/°C.

Standard specifications

Three-phase 400V

Basic type

Item	1			Specificat	tion									
Тур	e(FRNDDDE3S-4	1G)		0002	0004	0006	0007 *9	0012 *9	0022	0029	0037	0044	0059	0072
		HHD	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
			HP	1/2	1	2	3	5	7.5	10	15	20	25	30
		HND	kW	0.75	1.1	2.2	3	5.5	7.5	11	15	18.5	22	30
	ndard applicable		HP	1	1.5	3	4	7.5	10	15	20	25	30	40
note	or *1	HD	kW HP	0.75	1.1	2.2	3	5.5	7.5	11	15	18.5	22	30
			kW	1	1.5	3	4	7.5	10	15	20	25	30	40
		ND	HP	0.75	1.5 2	2.2 3	4	5.5 7.5	<u>11</u> 15	15 20	18.5 25	22 30	30 40	37 50
			HHD	1.1	1.9	3.2	4.2	7.0	11	14	18	24	30	34
			HND	1.4	2.6	3.8	4.8	8.5	13	18	27	31	34	46
	Rated capacity [kVA]	*2	HD	1.4	2.6	3.8	4.8	8.5	13	18	24	29	34	46
			ND	1.6	3.1	4.2	5.3	9.1	16	22	28	34	45	55
	Rated voltage [V] *3					180 V (with			10		20	01	10	00
	Thated Voltage [V] 0		HHD	1.5	2.5	4.2	5.5	9.2	14.8	18	24	31	39	45
			HND	1.8	3.4	5	6.3	11.1	17.5	23	35	41	45	60
6	Rated current [A] *4		HD	1.8	3.4	5	6.3	11.1	17.5	23	35	41	45	60
Output ratings			ND	2.1	4.1	5.5	6.9	12	21.5	28.5	37	44	59	72
rati			HHD			00% for 0.8			2110	20.0	0.			
nt	Overload current rati	na [A]	HND	120% for		007010101	00000.100							
utp	(permissible overload		HD	150% for										
0	(,	ND	120% for										
			HHD	-		131 °F1 (cui	rent derati	ng necessal	rv in +50 to) +55 °C [1	22 to 131 °	Fl range)		
								ng necessal						
			HND			2 -10 to +			iy iii 100 k	100 0[1		r j rango)		
	Ambient temperature	9						C [104 to 1	22 °F] rang	je)				
			HD	-10 to +50	°C [14 to 1	122 °F] (cui	rent derati	ng necessal	ry in +40 to	o +50 °C [1	04 to 122 °	F] range)		
			ND					ng necessal						
	Rated frequency [Hz]	1		50 / 60 Hz				<u> </u>	,					
	Voltage, frequency			Three-pha	se 380 to 4	480 V, 50/6	0 Hz							
	Voltage, frequency fl	uctuation		Voltage: +	10 to -15%	(interphas	e unbalano	ce ratio: 2%	or less) *8	, Frequenc	cy: +5 to -5	%		
			HHD	0.85	1.6	3	4.4	7.3	10.6	14.4	21.1	28.8	35.5	42.2
		With	HND	1.5	2.1	4.2	5.8	10.1	14.4	21.1	28.8	35.5	42.2	57
		DCR	HD	1.5	2.1	4.2	5.8	10.1	14.4	21.1	28.8	35.5	42.2	57
			ND	1.5	2.9	4.2	5.8	10.1	21.1	28.8	35.5	42.2	57	68.5
Sgr	Rated current [A] *5		HHD	1.7	3.1	5.9	8.2	13	17.3	23.2	33	43.8	52.3	60.6
atir		Without	HND	2.7	3.9	7.3	11.3	16.8	23.2	33	43.8	52.3	60.6	77.9
Input ratings		DCR	HD	2.7	3.9	7.3	11.3	16.8	23.2	33	43.8	52.3	60.6	77.9
du			ND	2.7	4.8	7.3	11.3	16.8	33	43.8	52.3	60.6	77.9	94.3
_			HHD	0.6	1.2	2.1	3.1	5.1	7.3	10	15	20	25	29
	Required power supp	ply	HND	1.1	1.5	3	4.1	7	10	15	20	25	29	39
	capacity (with DCR)		HD	1.1	1.5	3	4.1	7	10	15	20	25	29	39
			ND	1.1	2.1	3	4.1	7	15	20	25	29	39	47
	Auxiliary control pow	er supply	voltage					_					Single-pha 480 V, 5	ase 380 to 50/60 Hz
			HHD	10	0%	70%	4	0%			20	0%		
	Terrer 10 *7		HND	53%	68%	48%	29%	27%			15	5%		
king	Torque *7		HD	53%	68%	48%	29%	27%			15	5%		
akii			ND	53%	50%	48%	29%	27%			12	2%		
B	Braking transistor			Built-in										
	Connectable resistar	nce value	[Ω]		00	160 t	o 200	130 to 200	80min.	60min.	40min.	34.4min.	16r	nin.
	Braking resistor [Ω]			Option										
DC	reactor (DCR)			Option										
	ective construction (IE	EC 60529)		sed type.	JL open typ	ре							
	ling system		,	Natural co			Fan coolii	าต						
				1.1	1.4	1.4	1.4	1.7	3.8	3.8	5.2	5.4	11	11
Wei	ght [kg(lbs)]			[2.4]	[3.1]	[3.1]	[3.1]	[3.7]	[8.4]	[8.4]	[11]	[12]	[24]	[24]

(*1) Standard applicable motor indicates Fuji Electric 4-pole standard motors. Select a motor not only based on inverter output (ktw), put also so that the output rated current is greater that are motor rated current.
(*2) The rated capacity indicates 220 V for the 200V series, and 440 V for the 400V series.
(*3) It is not possible to output a voltage higher than the power supply voltage.
(*4) Setting the carrier frequency (F26) to the following value or above requires current derating. HHD spec. of types FRN0002E3]-4G to FRN0012E3]-4G : 8 kHz, FRN0022E3]-4G to FRN0072E3]-4G; 10 kHz
HND spec. of types FRN0002E3]-4G to FRN0012E3]-4G : 8 kHz, FRN0022E3]-4G to FRN0059E3]-4G; 10 kHz, FRN0072E3]-4G; 6 kHz
HD / ND spec. of types FRN0002E3]-4G to FRN0072E3]-4G; 4 kHz
(*5) This indicates the capacity when the motor is equipped with a DC reactor (DCR).
(*7) This is the average braking torque when performing individual operation. (This will vary based on the motor efficiency.)
(*8) Interphase unbalance ratio (%) = (Max. voltage [V] - min. voltage [V]/Three-phase average voltage [V] x 67 (see IEC/EN 61800-3). If using the motor with an unbalance ratio of 2 to 3%, use an AC reactor (ACR: option). (*1) Standard applicable motor indicates Fuji Electric 4-pole standard motors. Select a motor not only based on inverter output (kW), but also so that the output rated current is greater than the

AC reactor (ACR: option). (*9) For FRN0007/0012E3S-4G, FRN0007/0012E3N-4G HND specifications, If the ambient temperature is 40°C or higher, the output current must be derated by 1%/°C.

High performance Standard type Inverter

FRFN

Ethernet built-in type

ltem	1			Specificat	tion									
Тур	e(FRNE3N-4	lG)		0002	0004	0006	0007 *9	0012 *9	0022	0029	0037	0044	0059	0072
		ннр	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
		ппр	HP	1/2	1	2	3	5	7.5	10	15	20	25	30
		HND	kW	0.75	1.1	2.2	3	5.5	7.5	11	15	18.5	22	30
Star	ndard applicable		HP	1	1.5	3	4	7.5	10	15	20	25	30	40
mot	or *1	HD	kW	0.75	1.1	2.2	3	5.5	7.5	11	15	18.5	22	30
			HP	1	1.5	3	4	7.5	10	15	20	25	30	40
		ND	kW	0.75	1.5	2.2	3	5.5	11	15	18.5	22	30	37
			HP	1	2	3	4	7.5	15	20	25	30	40	50
		·	HHD	1.1	1.9	3.2	4.2	7.0	11	14	18	24	30	34
	Detectory and the flat (A)	*0	HND	1.4	2.6	3.8	4.8	8.5	13	18	27	31	34	46
	Rated capacity [kVA]	-2	HD	1.4	2.6	3.8	4.8	8.5	13	18	24	29	34	46
			ND	1.6	3.1	4.2	5.3	9.1	16	22	28	34	45	55
	Rated voltage [V] *3			Three-pha	se 400 to 4	80 V (with	AVR funct	ion)		1				1
			HHD	1.5	2.5	4.2	5.5	9.2	14.8	18	24	31	39	45
			HND	1.8	3.4	5	6.3	11.1	17.5	23	35	41	45	60
~	Rated current [A] *4		HD	1.8	3.4	5	6.3	11.1	17.5	23	35	41	45	60
ngs			ND	2.1	4.1	5.5	6.9	12	21.5	28.5	37	44	59	72
rati			HHD		1 minute. 20									
Dutput ratings	Overload current rati	na [A] na	HND	120% for	,		50001105							
outp	(permissible overload		HD	150% for										
0			ND	120% for						-		-		
			HHD	-		21 ºE1 (our	ront dorati	ng necessa	nvin 150 te	1 DE 90 [1	22 to 121	El rango)		
								<u> </u>		-				
			HND		07 to 0012			ng necessa	ry in +50 to	0+55-0[1	22 10 131	Fj range)		
	Ambient temperature)		1				C [104 to 1	22 °F1 rand	ne)				
			HD	1				ng necessa			04 to 122 °	Fl range)		
			ND					ng necessa	-			,		
	Rated frequency [Hz]	1		50 / 60 Hz	<u> </u>	22 1](001	Torne dorati	ng noocoou	19111101			i jiango)		
	Voltage, frequency	1			se 380 to 4	80 V 50/6	0 Hz							
	Voltage, frequency flu	uctuation						e ratio: 2%	or less) *8	Frequenc	rv: ±5 to -5	%		
	voltage, irequelley in		HHD	0.85	1.6	3	4.4	7.3	10.6	14.4	21.1	28.8	35.5	42.2
		14/3410	HND	1.5	2.1	4.2	5.8	10.1	14.4	21.1	28.8	35.5	42.2	57
		With DCR	HD	1.5	2.1	4.2	5.8	10.1	14.4	21.1	28.8	35.5	42.2	57
		Don		-								-		
S	Rated current [A] *5		ND	1.5	2.9	4.2	5.8	10.1	21.1	28.8	35.5	42.2	57	68.5
Input ratings			HHD	1.7	3.1	5.9	8.2	13	17.3	23.2	33	43.8	52.3	60.6
rat		Without	HND	2.7	3.9	7.3	11.3	16.8	23.2	33	43.8	52.3	60.6	77.9
put		DCR	HD	2.7	3.9	7.3	11.3	16.8	23.2	33	43.8	52.3	60.6	77.9
드			ND	2.7	4.8	7.3	11.3	16.8	33	43.8	52.3	60.6	77.9	94.3
			HHD	0.6	1.2	2.1	3.1	5.1	7.3	10	15	20	25	29
	Required power supp		HND	1.1	1.5	3	4.1	7	10	15	20	25	29	39
	capacity (with DCR) [[kVA] *6	HD	1.1	1.5	3	4.1	7	10	15	20	25	29	39
			ND	1.1	2.1	3	4.1	7	15	20	25	29	39	47
	Auxiliary control powe	er supply	voltage					-					Single-pha 480 V, 5	ase 380 to 50/60 Hz
			HHD	10	0%	70%	4	0%			2	0%		
			HND	53%	68%	48%	29%	27%				5%		
g	Torque *7		HD	53%	68%	48%	29%	27%				5%		
Braking			ND	53%	50%	48%	29%	27%				2%		
Bra	Braking transistor		1	Built-in										
	Connectable resistan	ice value	[Ω]		00	160 t	o 200	130 to 200	80min.	60min.	40min.	34.4min.	16r	nin.
	Braking resistor [Ω]		[]	Option		100 (100 10 200				•	101	
	reactor (DCR)			Option										
)		sed type, l	ll open ta	20							
	optive construction //F			TIFZU ENCIO	iseu iype, t	re open typ	Je -							
Prot	ective construction (IE	20 00529	/	-	oling		Ean anali-	na l						
Prot	ective construction (IE ling system	20 00529	/	Natural co		4.5	Fan coolir	<u> </u>	07	0.0	5.0	F 4	4.4	
Prot Coo		20 00529	/	-	oling 1.4 [3.1]	1.5 [3.3]	Fan coolir 1.4 [3.1]	1.8 [4.0]	3.7 [8.2]	3.8 [8.4]	5.3 [12]	5.4 [12]	11 [24]	11 [24]

(*1) Standard applicable motor indicates Fuji Electric 4-pole standard motors. Select a motor not only based on inverter output (kW), but also so that the output rated current is greater than the motor rated current.
(*2) The rated capacity indicates 220 V for the 200V series, and 440 V for the 400V series.
(*3) It is not possible to output a voltage higher than the power supply voltage.
(*4) Setting the carrier frequency (F26) to the following value or above requires current derating. HHD spec. of types FRN0002E3] 4G to FRN0012E3] 4G ; 8 kHz, FRN0022E3] -4G to FRN0072E3] -4G; 10 kHz HND spec. of types FRN0002E3] 4G to FRN0012E3] 4G ; 8 kHz, FRN0022E3] -4G to FRN0072E3] -4G; 10 kHz HD / D spec. of types FRN0002E3] 4G to FRN0012E3] 4G ; 8 kHz, FRN0022E3] 4G to FRN0072E3] -4G; 6 kHz
(*5) This indicates the estimated value if the power supply capacity is 500 kVA (10 times inverter capacity inverter capacity exceeds 50 kVA), and the motor is connected to a power supply of %X = 5%.
(*6) This indicates the estimated value if the power supply capacity is 500 kVA (10 times inverter capacity if inverter capacity exceeds 50 kVA), and the motor is connected to a power supply of %X = 5%.
(*6) This indicates the capacity when the motor is equipped with a DC reactor (DCR).
(*7) This is the average braing torque when performing individual operation. (This will vary based on the motor efficiency.)
(*8) Interphase unbalance ratio [%] = (Max. voltage [V] - min. voltage [V]/Three-phase average voltage [V] x 67 (see IEC/EN 61800-3). If using the motor with an unbalance ratio of 2 to 3%, use an AC reactor (ACR: option).
(*9) For FRN0007/0012E3N-4G HND specifications, If the ambient temperature is 40°C or higher, the output current must be derated by 1%/°C.

Standard specifications

Three-phase 400V

EMC filter built-in type

Prove the set of	Item	1			Specificat	tion										
HID HID <th>Тур</th> <th>e(FRNE3E-4</th> <th>G)</th> <th></th> <th>0002</th> <th>0004</th> <th>0006</th> <th></th> <th></th> <th>0022</th> <th>0029</th> <th>0037</th> <th>0044</th> <th>0059</th> <th>0072</th>	Тур	e(FRNE3E-4	G)		0002	0004	0006			0022	0029	0037	0044	0059	0072	
Standard applicable Imp 11 12 3 5 7.5 10 15 820 2.5 30 Standard applicable HM0 HP 1 1.5 2 3 5.5 7.5 10 15 20 25 30 40 M0 HP 1 1.5 3 4 7.5 11 15 20 25 30 40 M0 W0 7.5 1.1 2.2 3 5.5 11 15 20 25 30 40 50 M0 1.4 2.8 3 4 7.5 11 14 14 26 38 4.8 8.5 13 16 24 29 34 45 55 57 Rade capacity (KM) ?2 HM0 1.6 2.5 4.4 8.5 41 45 56 57 11 14 2.5 35 41 45 66 66				kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	
Bandor 1 IND holor 1 IND Ho IPP HP I 15 3 4 7.5 10 15 26 30 40 HD HP I 1.5 23 5.5 7.5 10 15 26 30 40 HP I 1.5 23 45 7.5 11 14 18 24 30 40 50 40 50 40 50 40 50 40 50 40 50 44 46 50 11 16 18 24 29 31 44 46 46 46 65 13 16 24 29 34 45 55 55 75 11 17.5 23 35 41 45 56 57 11 17.5 23 35 41 45 60 11 17.5 23 35 41 45 60 12 15 21 11			ппр	HP	1/2	1	2	3	5	7.5	10	15	20	25	30	
Standard applicable motor ! HP I 1.5 3 4 7.5 10 15 22 30 40 motor ! HD W 0.75 1.1 22 3 5.5 110 15 20 25 30 40 ND W 0.75 1.5 2.2 3 5.5 110 15 20 25 30 40 ND W 0.75 1.5 2.2 3 5.5 11 15 20 25 30 40 5.5 5.5 7.5 11 14 16 2.4 7.6 13 18 2.4 2.0 34 46 6.5 6.3 11.1 17.5 2.3 35 41 45 50 50 11.1 17.5 2.3 35 41 45 60 11.1 17.5 2.3 35 41 45 60 11.1 17.5 2.3 35 41 <t< td=""><td></td><td></td><td></td><td>kW</td><td>0.75</td><td>1.1</td><td>2.2</td><td>3</td><td>5.5</td><td>7.5</td><td>11</td><td>15</td><td>18.5</td><td>22</td><td>30</td></t<>				kW	0.75	1.1	2.2	3	5.5	7.5	11	15	18.5	22	30	
HO HP Vi 15 8 4 7.5 10 15 22 3 55 11 15 22 30 40 NO HP 1 2 3 4 7.5 15 20 25 30 40 35 Relation (apacity [kM] "2 HHO 1.1 2.5 3.8 4.8 7.0 1.1 4.8 24 20 34 44 Paleo voltage (V] "3 HTO 1.4 2.6 3.8 4.8 7.0 1.1 1.6 3.7 4.4 2.6 3.8 4.1 1.5 2.6 3.8 4.1 5.6 3.9 1.1 1.7 2.2 3.5 4.4 4.5 6.0 3.1 1.1 1.7.5 2.3 3.5 4.1 4.5 6.0 3.1 1.1 1.7.5 2.3 3.5 4.1 4.5 6.0 1.1 1.1 1.5 2.6 0.7 4.4 5.6 6.0	Star	ndard applicable		HP	1	1.5	3	4	7.5	10	15	20	25	30	40	
ND HP 1 1 5 3 4 7.5 10 15 2.2 30 40 ND HP 1 2 3 4 7.5 11 15 2.2 30 40 57 Rated capach(kM/) '2 11 1.4 2.8 3.8 4.8 8.5 13 18 2.4 30 34 46 ND 1.6 3.1 4.2 5.3 9.1 16 2.2 2.8 34 46 Rated current [A] '4 HND 1.8 3.4 5 6.3 11.1 17.5 2.3 35 41 45 60 Overlaad current raing [A] HND 1.8 3.4 5 6.3 11.1 17.5 2.3 35 41 45 60 Overlaad current raing [A] HND 10.8 3.4 5 6.3 11.1 17.5 2.3 35 41 45 60 </td <td>mote</td> <td>or *1</td> <td>ПР</td> <td>kW</td> <td>0.75</td> <td>1.1</td> <td>2.2</td> <td>3</td> <td>5.5</td> <td>7.5</td> <td>11</td> <td>15</td> <td>18.5</td> <td>22</td> <td>30</td>	mote	or *1	ПР	kW	0.75	1.1	2.2	3	5.5	7.5	11	15	18.5	22	30	
ND HP 1 2 3 4 7.5 15 200 25 300 400 500 Rated capacity [kVA] "2 HPD 11 12 2 3.6 4.8 9.5 13 14 18 2.4 30 34 446 Rated capacity [kVA] "2 HPD 1.4 2.6 3.8 4.8 9.5 13 18 2.4 30 34 466 650 Rated current [A] "4 HPD 1.8 2.4 5.5 9.2 1.4 18 2.4 31 49 450 690 72 Rated current [A] "4 HPD 18 3.4 5 63.3 111 17.5 2.8 37 44 450 690 72 Contrad current [A] "4 HPD 1695 for 1 minula 2.4 5.6 6.0 1.1 1.5 2.8 3.1 1.4 1.5 72 1.5 2.8 1.5 1.5 1.5 1.5 <td></td> <td></td> <td></td> <td>HP</td> <td>1</td> <td>1.5</td> <td>3</td> <td>4</td> <td>7.5</td> <td>10</td> <td>15</td> <td>20</td> <td>25</td> <td>30</td> <td>40</td>				HP	1	1.5	3	4	7.5	10	15	20	25	30	40	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				kW	0.75	1.5	2.2	3	5.5	11	15	18.5	22	30	37	
Pated capacity [kV4] '2 IND 1.4 2.6 3.8 4.8 8.5 13 18 2.7 31 34 46 Pated voltage [V] '3 Three-phase 400 to 400 V (Wh AVF function) I 16 2.1 4.2 5.3 9.1 16 2.2 2.8 34 45 55 Pated current [A] '4 IHO 1.5 2.5 4.2 5.5 9.2 14.8 18 2.4 31 36 45 60 Overfoad current [A] '4 IHO 1.8 3.4 5 6.3 11.1 17.5 2.3 35 41 45 60 Overfoad current [A] '4 IHO 1.80 2.4 2.5 6.9 1.2 2.1 6.3 11.1 17.5 2.3 35 41 45 60 60 1.2 2.1 6.3 1.1 17.5 2.3 35 41.4 55 7 1.2 1.2 1.2 1.2 1.2 1.2 1.2				HP	1	2	3	4	7.5	15	20	25	30	40	50	
Pated capacity [kVA]*2 HD 1.4 2.6 3.8 4.8 8.5 13 18 2.4 2.9 3.4 4.5 Fated vortage [V] '3 Three phase 400 k80 V (with AVR function) Three phase 400 k80 V (with AVR function) 1.6 2.2 3.8 3.4 4.5 5.5 9.2 1.4.8 1.8 2.4 3.1 3.9 4.5 5.5 9.2 1.4.8 1.8 2.4 3.1 3.9 4.5 6.3 11.1 1.7.5 2.3 3.5 4.1 4.5 6.3 11.1 1.7.5 2.3 3.5 4.1 4.5 6.3 11.1 1.7.5 2.3 3.5 4.1 4.5 6.3 11.1 1.7.5 2.3 3.5 4.1 4.5 6.0 1.0 <th1.0< th=""> 1.0 <th1.0< th=""></th1.0<></th1.0<>				HHD	1.1	1.9	3.2	4.2	7.0	11	14	18	24	30	34	
No. 1.4.0 1.4.3 2.6 3.3 4.8 8.5 1.3 1.8 2.2 2.8 3.4 4.6 5.5 Pated current (A) '4 H10 1.6 2.5 4.2 5.5 9.2 1.4.8 1.8 2.4 3.5 3.1 4.5 5.5 9.2 1.4.8 1.8 2.4 3.5 4.1 4.5 6.0 1.1 1.7.5 2.3 3.5 4.1 4.5 6.0 1.1 1.7.5 2.3 3.5 4.1 4.5 6.0 1.2 2.1.5 2.8.5 3.7 4.4 5.9 7.2 M0 2.1 4.1 5.5 6.9 1.2 2.1.5 2.8.5 3.7 4.4 5.9 7.2 H10 10.50* 6.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <th1.0< th=""> <th1.0< th=""> 1.0</th1.0<></th1.0<>		D	*0	HND	1.4	2.6	3.8	4.8	8.5	13	18	27	31	34	46	
Intro-ephase 200 to 440 V with AVR function) Intro-ephase 200 to 440 V with AVR function) Intro-ephase 200 to 440 V with AVR function) Intro-ephase 200 to 440 V with AVR function) Intro-ephase 200 to 440 V with AVR function) Intro-ephase 200 to 440 V with AVR function) Intro-ephase 200 to 440 V with AVR function) Intro-ephase 200 to 440 V with AVR function) Intro-ephase 200 to 440 V with AVR function) Intro-ephase 200 to 450 ° C [140 to 131 ° F] Intro-ephase 200 to 450 ° C [140 to 131 ° F] Intro-ephase 200 to 450 ° C [140 to 131 ° F] Intro-ephase 200 to 450 ° C [140 to 132 ° F] Intro-ephase 200 to 450 ° C [140 to 132 ° F] Intro-ephase 200 to 240 V. 5060 Hz Voltage frequency [Hz] No 400 To 0007 to 00012 · 100 to 22 ° F] Intro-ephase 200 to 240 V. 5060 HZ Voltage frequency [Hz] S0 / 60 Hz Voltage frequency [Hz] Voltage frequency [Hz] S0 / 60 Hz Voltage frequency [Hz] Voltage frequency [Hz] Voltage frequency [Hz] </td <td></td> <td>Rated capacity [KVA]</td> <td>^2</td> <td>HD</td> <td>1.4</td> <td>2.6</td> <td>3.8</td> <td>4.8</td> <td>8.5</td> <td>13</td> <td>18</td> <td>24</td> <td>29</td> <td>34</td> <td>46</td>		Rated capacity [KVA]	^2	HD	1.4	2.6	3.8	4.8	8.5	13	18	24	29	34	46	
Pated current [A] '4 HHD 1.5 2.5 4.2 5.5 9.2 14.8 18 24 31 39 45 Pated current [A] '4 HHD 1.8 3.4 5 6.3 11.1 17.5 23 35 41 45 60 Overload current rating [A] (permissible overload time) HHD 100% for 1 minute 100 for 1 22 ° F1 (current derating necessary in +40 to +50° C [104 to 122 ° F1 range) 100 for 0 for 0 100 10 10 10 10 for 122 ° F1 range) 100 for 0 for 0 100 10 10 10 10 for 122 ° F1 range) 100 for 10 for				ND	1.6	3.1	4.2	5.3	9.1	16	22	28	34	45	55	
Pated current [A] '4 HHD 1.5 2.5 4.2 5.5 9.2 14.8 18 24 31 39 45 Pated current [A] '4 HHD 1.8 3.4 5 6.3 11.1 17.5 23 35 41 45 60 Overload current rating [A] (permissible overload time) HHD 100% for 1 minute 100 for 1 22 ° F1 (current derating necessary in +40 to +50° C [104 to 122 ° F1 range) 100 for 0 for 0 100 10 10 10 10 for 122 ° F1 range) 100 for 0 for 0 100 10 10 10 10 for 122 ° F1 range) 100 for 10 for		Rated voltage [V] *3		1	Three-pha	se 400 to 4	80 V (with	AVR funct	ion)							
Pated current [A] '4 HND 1.8 3.4 5 6.3 11.1 17.5 2.3 3.5 4.1 4.5 6.0 Overload current raiting [A] '4 HD 1.8 3.4 5 6.3 11.1 17.5 2.3 3.5 4.1 4.5 6.0 Overload current raiting [A] '4 HD 1.60% for T minute 20.5 3.7 4.4 4.5 6.0 Ambient temperature HD 1.60% for T minute 1.00 5.5 C [12 to 131 " F] range) HD 1.00 for 55" C [14 to 131 " F] (current derating necessary in 4.00 to 50" C [14 to 122 " F] range) 1.00 for 50" C [14 to 122 " F] range) HD 1.00 for 50" C [14 to 122 " F] (current derating necessary in 4.00 to 50" C [14 to 122 " F] range) 1.00 for 50" C [14 to 122 " F] range) HD 1.00 for 50" C [14 to 122 " F] (current derating necessary in 4.00 to 50" C [14 to 122 " F] range) 1.00 for 50" C [14 to 122 " F] range) HD 1.01 for 50" C [14 to 122 " F] (current derating necessary in 4.00 to 50" C [14 to 122 " F] range) 1.01 for 50" C [14 to 122 " F] range) 1.01 for 50" C [14 to 122 " F] range) 1.01 for 50" C [14 to 122 " F] range) 1.01 for 50" C [14 to 122 " F] range)				HHD				1	, ·	14.8	18	24	31	39	45	
Plated current [A] '4 HD 1.8 3.4 5 6.3 11.1 17.5 2.3 3.6 4.1 4.5 6.0 Overload current rating [A] (permissible overload time) HHD 150% for 1 minute 5.5 6.9 12 21.5 28.5 3.7 4.4 5.9 7.2 Mole 2.1 4.1 5.5 6.9 12 21.5 28.5 3.7 4.4 5.9 7.2 Mole 120% for 1 minute 110 mole 45° (14 to 131 ° F) (current derating necessary in 40 to 450 ° C) (104 to 122 ° F) range) 100 mole 45° (14 to 131 ° F) (current derating necessary in 40 to 450 ° C) (104 to 122 ° F) range) 100 mole 45° (14 to 123 ° F) (current derating necessary in 40 to 45° ° C) (104 to 122 ° F) range) 100 mole 45° (14 to 123 ° F) (current derating necessary in 40 to 45° ° C) (104 to 122 ° F) range) 100 mole 45° (14 to 123 ° F) (current derating necessary in 40 to 45° ° C) (104 to 122 ° F) range) 100 mole 45° (14 to 123 ° F) (20% for 15% (intminite 42° for) 110 mole 43° (14 to					-											
ND 2.1 4.1 5.5 6.9 12 21.5 28.5 37 4.4 59 72 Overload current rating [A] (permissible overload time] HHD 150% for 1 minute 200% 500% 50.5 50.7 74.4 59 72 Ambient temperature HHD 150% for 1 minute 200% 50.6 11.31 F] (current derating necessary in +50 to +55° C [122 to 131' F] range) HHD 10 to +55° C [14 to 122' F] (current derating necessary in +50 to +50° C [104 to 122' F] range) HND 10 to +50° C [14 to 122' F] (current derating necessary in +40 to +50° C [14 to 122' F] range) HND 10 to +50° C [14 to 122' F] (current derating necessary in +40 to +50° C [14 to 122' F] range) Votage, frequency Three-phase ±0 to 240 V, 50/60 Hz Votage + 10 to +50° C [14 to 122' F] range) Votage, frequency MthD 1.5 2.1 4.2 5.8 10.1 14.4 21.1 28.8 35.5 42.2		Rated current [A] *4														
ND 120% for 1 mmule Ambient temperature ND 10 10 565° C [14 to 131° F] (current derating necessary in +50 to +55° C [122 to 131° F] range) ND -1010 55° C [14 to 131° F] (current derating necessary in +50 to +55° C [122 to 131° F] range) ND -1010 55° C [14 to 131° F] (current derating necessary in +50 to +55° C [104 to 122° F] range) ND -1010 55° C [14 to 131° F] (current derating necessary in +40 to +50° C [104 to 122° F] range) ND -101 to +50° C [14 to 123° F] (current derating necessary in +40 to +50° C [104 to 122° F] range) Voltage, frequency Hz 50 /60 Hz Voltage, frequency Hz Voltage: 10 to -15% (riterphase unbalance ratio: 2% or less) '8, Frequency: +5 to -5 % Voltage, frequency Hz Voltage: 10 to -15% (riterphase unbalance ratio: 2% or less) '8, Frequency: +5 to -5 % Voltage, frequency Hz Voltage: 10 to -15% (riterphase unbalance ratio: 2% or less) '8, Frequency: +5 to -5 % Voltage With HD 16 /2 Voltage: 10 /2 <th r<="" td=""><td>ngs</td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></th>	<td>ngs</td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	ngs			-	-								-		
ND 120% for 1 mmule Ambient temperature ND 10 10 565° C [14 to 131° F] (current derating necessary in +50 to +55° C [122 to 131° F] range) ND -1010 55° C [14 to 131° F] (current derating necessary in +50 to +55° C [122 to 131° F] range) ND -1010 55° C [14 to 131° F] (current derating necessary in +50 to +55° C [104 to 122° F] range) ND -1010 55° C [14 to 131° F] (current derating necessary in +40 to +50° C [104 to 122° F] range) ND -101 to +50° C [14 to 123° F] (current derating necessary in +40 to +50° C [104 to 122° F] range) Voltage, frequency Hz 50 /60 Hz Voltage, frequency Hz Voltage: 10 to -15% (riterphase unbalance ratio: 2% or less) '8, Frequency: +5 to -5 % Voltage, frequency Hz Voltage: 10 to -15% (riterphase unbalance ratio: 2% or less) '8, Frequency: +5 to -5 % Voltage, frequency Hz Voltage: 10 to -15% (riterphase unbalance ratio: 2% or less) '8, Frequency: +5 to -5 % Voltage With HD 16 /2 Voltage: 10 /2 <th r<="" td=""><td>rati</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>12</td><td>21.0</td><td>20.0</td><td>01</td><td></td><td>00</td><td>72</td></th>	<td>rati</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>12</td> <td>21.0</td> <td>20.0</td> <td>01</td> <td></td> <td>00</td> <td>72</td>	rati								12	21.0	20.0	01		00	72
ND 120% for 1 mmule Ambient temperature ND 10 10 565° C [14 to 131° F] (current derating necessary in +50 to +55° C [122 to 131° F] range) ND -1010 55° C [14 to 131° F] (current derating necessary in +50 to +55° C [122 to 131° F] range) ND -1010 55° C [14 to 131° F] (current derating necessary in +50 to +55° C [104 to 122° F] range) ND -1010 55° C [14 to 131° F] (current derating necessary in +40 to +50° C [104 to 122° F] range) ND -101 to +50° C [14 to 123° F] (current derating necessary in +40 to +50° C [104 to 122° F] range) Voltage, frequency Hz 50 /60 Hz Voltage, frequency Hz Voltage: 10 to -15% (riterphase unbalance ratio: 2% or less) '8, Frequency: +5 to -5 % Voltage, frequency Hz Voltage: 10 to -15% (riterphase unbalance ratio: 2% or less) '8, Frequency: +5 to -5 % Voltage, frequency Hz Voltage: 10 to -15% (riterphase unbalance ratio: 2% or less) '8, Frequency: +5 to -5 % Voltage With HD 16 /2 Voltage: 10 /2 <th r<="" td=""><td>nt</td><td>Overland ourrent ratio</td><td></td><td></td><td>1</td><td></td><td>0.0</td><td>50001105</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>nt</td> <td>Overland ourrent ratio</td> <td></td> <td></td> <td>1</td> <td></td> <td>0.0</td> <td>50001105</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	nt	Overland ourrent ratio			1		0.0	50001105							
ND 120% for 1 mmule Ambient temperature ND 10 10 565° C [14 to 131° F] (current derating necessary in +50 to +55° C [122 to 131° F] range) ND -1010 55° C [14 to 131° F] (current derating necessary in +50 to +55° C [122 to 131° F] range) ND -1010 55° C [14 to 131° F] (current derating necessary in +50 to +55° C [104 to 122° F] range) ND -1010 55° C [14 to 131° F] (current derating necessary in +40 to +50° C [104 to 122° F] range) ND -101 to +50° C [14 to 123° F] (current derating necessary in +40 to +50° C [104 to 122° F] range) Voltage, frequency Hz 50 /60 Hz Voltage, frequency Hz Voltage: 10 to -15% (riterphase unbalance ratio: 2% or less) '8, Frequency: +5 to -5 % Voltage, frequency Hz Voltage: 10 to -15% (riterphase unbalance ratio: 2% or less) '8, Frequency: +5 to -5 % Voltage, frequency Hz Voltage: 10 to -15% (riterphase unbalance ratio: 2% or less) '8, Frequency: +5 to -5 % Voltage With HD 16 /2 Voltage: 10 /2 <th r<="" td=""><td>utp</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>utp</td> <td></td>	utp														
method is a set of the interval in the interval in the interval in the interval inter	0	(permissione evenede														
- 10 0 + 55 ° C [14 to 131 ° F] (current derating necessary in +40 to +50 ° C [104 to 122 ° F] range) Type of 00/7 to 012 + 10 + 60 ° C [14 to 122 ° F] Type of 00/7 to 012 + 10 + 60 ° C [14 to 122 ° F] range) HD							101 ° E1 (ourropt do	oting page	oon in F	to FE °	C [100 to 1	01° El ron	co)		
Ambient temperature HND (Figure 0 for 0007 to 0012 - 10 to +50° C [14 to 122° F] range) No																
(current derating necessary in -40 to -50 ° C [14 to 122° F] cange) HD -10 to +50 ° C [14 to 122° F] (current derating necessary in +40 to +50 ° C [104 to 122° F] range) ND -10 to +50 ° C [14 to 122° F] (current derating necessary in +40 to +50 ° C [104 to 122° F] range) Voltage, frequency (Itzluation Voltage, frequency Three-phase 20 to 240 V, 50/60 Hz Voltage, frequency Woltage, trequency Woltage, tro 10 - 15% (interphase unbalance ratio: 2% or less) *8, Frequency, +5 to -5 % No 1.5 2.1 4.2 5.8 10.1 14.4 21.1 28.8 35.5 42.2 5.7 Rated current [A] *5 With DCR HND 1.5 2.1 4.2 5.8 10.1 14.4 21.1 28.8 35.5 42.2 5.7 Rated current [A] *5 With DCR HND 1.5 2.1 4.2 5.8 10.1 14.4 21.1 28.8 35.5 42.2 5.7 MD 1.5 2.1 4.2 5.8 10.1 14.8 23.2 33 43.8 52.3 60.6 77.9 94.3										isary in +5	J 10 +55	6 [122 10 1	31 Fjran	ge)		
Indication of the interval in the interval interval in the interval interval interval in the interval interva		Ambient temperature								122 ° Fl ra	ange)					
Mode 10 to +50 ° C [14 to 122 ° F] (current derating necessary in +40 to +50 ° C [104 to 122 ° F] range) Rated frequency [Hz] 50 / 60 Hz Voltage, frequency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, requency fluctuation Voltage, r				HD	`				b			C [104 to 1	22° Firan	ae)		
Rated frequency [Hz] 50 / 60 Hz Three-phase 200 to 240 V, 50/60 Hz Voltage, frequency Three-phase 200 to 240 V, 50/60 Hz Voltage, frequency fluctuation Three-phase 200 to 240 V, 50/60 Hz Voltage, frequency fluctuation Voltage, frequency: +5 to -5 % Voltage, frequency fluctuation Voltage, frequency: +5 to -5 % Voltage, frequency fluctuation Voltage, frequency: +5 to -5 % Voltage, frequency fluctuation Voltage, frequency: +5 to -5 % Voltage, frequency fluctuation Voltage, frequency: +5 to -5 % Voltage, frequency: +1 (a) Voltage, frequency: +5 to -5 % Voltage, frequency: +1 (100 % 10 11 <th< td=""><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>• ,</td><td></td></th<>				-		-						-		• ,		
Voltage, frequency Three-phase 200 to 240 V, 50/60 Hz Voltage, frequency fluctuation Voltage: +10 to -15% (interphase unbalance ratio: 2% or less) *8, Frequency: +5 to -5 % Pated current [A] *5 HIND 1.5 2.1 4.2 5.8 10.1 14.4 21.1 28.8 35.5 42.2 57 Pated current [A] *5 With DCR HIND 1.5 2.1 4.2 5.8 10.1 14.4 21.1 28.8 35.5 42.2 57 Pated current [A] *5 With UNthout HIND 1.7 3.1 5.9 8.2 13 17.3 23.2 33 43.8 52.3 60.6 77.9 94.3 HIND 2.7 3.8 7.3 11.3 16.8 23.2 33 43.8 52.3 60.6 77.9 94.3 HIND 2.7 4.8 7.3 11.3 16.8 23.2 33 43.8 52.3 60.6 77.9 94.3 HIND 1.1 1.5		Bated frequency [Hz]	1						ating needs	Sury III 14	5 10 100			90)		
Voltage: frequency: ILUCIUATION Voltage: +10 to -15% (interphase unbalance ratio: 2% or less) *8, Frequency: +5 to -5 %. Voltage: Frequency: +5 to -5 %. <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>40 V 50/6</td><td>0 Hz</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							40 V 50/6	0 Hz								
No Instruction HHD 0.85 1.6 3 4.4 7.3 10.6 14.4 21.1 28.8 35.5 42.2 57 Brade current [A] *5 Mith DCR HD 1.5 2.1 4.2 5.8 10.1 14.4 21.1 28.8 35.5 42.2 57 Mith DCR HD 1.5 2.9 4.2 5.8 10.1 21.1 28.8 35.5 42.2 57 Mith DCR HD 1.7 3.1 5.9 8.2 13 17.3 23.2 33 43.8 52.3 60.6 77.9 94.3 HND 2.7 3.9 7.3 11.3 16.8 23.2 33 43.8 52.3 60.6 77.9 94.3 HND 0.6 1.2 2.1 3.1 5.1 7.3 10 15 20 25 29 39 39 43.4 43.0 5.2.3 60.6 77.9 <td></td> <td></td> <td>ictuation</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>o ratio: 2%</td> <td>or loce) *9</td> <td>Eroquono</td> <td>VI IE to E</td> <td>0/.</td> <td></td> <td></td>			ictuation						o ratio: 2%	or loce) *9	Eroquono	VI IE to E	0/.			
Note HND 1.5 2.1 4.2 5.8 10.1 14.4 21.1 28.8 35.5 42.2 57 Rated current [A] *5 HD 1.5 2.1 4.2 5.8 10.1 14.4 21.1 28.8 35.5 42.2 57 Main HD 1.5 2.9 4.2 5.8 10.1 14.4 21.1 28.8 35.5 42.2 57 Main MD 2.7 3.9 7.3 11.3 16.8 23.2 33 43.8 52.3 60.6 77.9 HD 2.7 3.9 7.3 11.3 16.8 23.2 33 43.8 52.3 60.6 77.9 Required power supply capacity (with DCR) [VA] *6 HD 1.1 1.5 3 4.1 7 10 15 20 25 29 39 ND 1.1 2.1 3 4.1 7 10 15 20 25 29		Voltage, irequency in		ППП			<u>`</u>	1	1	,		i	-	25.5	10.0	
Propertion Propertion Propering bit is properis bit propering bit is propering bit is propering bit i							-									
No 1.5 2.9 4.2 5.8 10.1 21.1 28.8 33.5 42.2 5.7 68.5 Method current [A] *5 HHD 1.7 3.1 5.9 8.2 13 17.3 23.2 33 43.8 52.3 60.6 77.9 Method current [A] *5 HHD 2.7 3.9 7.3 11.3 16.8 23.2 33 43.8 52.3 60.6 77.9 Method current [A] *5 HHD 2.7 4.8 7.3 11.3 16.8 23.2 33 43.8 52.3 60.6 77.9 94.3 Method power supply capacity (with DCR) [KM] *6 HHD 1.1 1.5 3 4.1 7 10 15 20 25 29 39 Auxiliary control power supply capacity (with DCR) [KM] *6 HHD 1.1 2.1 3 4.1 7 10 15 20 25 29 39 Auxiliary control power supply capacity (with DCR) [KM] *6 HHD <					-				-			-			-	
Bated current [A]*5 HHD 1.7 3.1 5.9 8.2 13 17.3 23.2 33 43.8 52.3 60.6 Without DCR HHD 1.7 3.1 5.9 8.2 13 17.3 23.2 33 43.8 52.3 60.6 77.9 MD 2.77 3.9 7.3 11.3 16.8 23.2 33 43.8 52.3 60.6 77.9 MD 2.77 4.8 7.3 11.3 16.8 23.2 33 43.8 52.3 60.6 77.9 MD 2.77 4.8 7.3 11.3 16.8 33 43.8 52.3 60.6 77.9 MD 1.1 1.5 3 4.1 7 10 15 20 25 29 39 47 Auxiliary control power supply chage I.1 2.1 3 4.1 7 10 15 20 25 29 39 47																
HHD 0.6 1.2 2.1 3.1 5.1 7.3 10 15 20 25 29 Required power supply capacity (with DCR) [kVA]*6 HD 1.1 1.5 3 4.1 7 10 15 20 25 29 39 Auxiliary control power supply capacity (with DCR) [kVA]*6 HD 1.1 1.5 3 4.1 7 10 15 20 25 29 39 47 Auxiliary control power supply capacity (with DCR) [kVA]*6 HD 1.1 2.1 3 4.1 7 10 15 20 25 29 39 47 Auxiliary control power supply voltage	S	Rated current [A] *5			-				-		-					
HHD 0.6 1.2 2.1 3.1 5.1 7.3 10 15 20 25 29 Required power supply capacity (with DCR) [kVA]*6 HD 1.1 1.5 3 4.1 7 10 15 20 25 29 39 Auxiliary control power supply capacity (with DCR) [kVA]*6 HD 1.1 1.5 3 4.1 7 10 15 20 25 29 39 47 Auxiliary control power supply capacity (with DCR) [kVA]*6 HD 1.1 2.1 3 4.1 7 10 15 20 25 29 39 47 Auxiliary control power supply voltage	ting															
HHD 0.6 1.2 2.1 3.1 5.1 7.3 10 15 20 25 29 Required power supply capacity (with DCR) [kVA]*6 HD 1.1 1.5 3 4.1 7 10 15 20 25 29 39 Auxiliary control power supply capacity (with DCR) [kVA]*6 HD 1.1 1.5 3 4.1 7 10 15 20 25 29 39 47 Auxiliary control power supply capacity (with DCR) [kVA]*6 HD 1.1 2.1 3 4.1 7 10 15 20 25 29 39 47 Auxiliary control power supply voltage	tra				-				-			-				
HHD 0.6 1.2 2.1 3.1 5.1 7.3 10 15 20 25 29 Required power supply capacity (with DCR) [kVA]*6 HD 1.1 1.5 3 4.1 7 10 15 20 25 29 39 Auxiliary control power supply capacity (with DCR) [kVA]*6 HD 1.1 1.5 3 4.1 7 10 15 20 25 29 39 47 Auxiliary control power supply capacity (with DCR) [kVA]*6 HD 1.1 2.1 3 4.1 7 10 15 20 25 29 39 47 Auxiliary control power supply voltage	indi		DCR													
Required power supply capacity (with DCR) [kVA] *6 HND 1.1 1.5 3 4.1 7 10 15 20 25 29 39 Auxiliary control power supply capacity (with DCR) [kVA] *6 11 1.5 3 4.1 7 10 15 20 25 29 39 37 Auxiliary control power supply rorque *7 MHD 1.1 1.5 3 4.1 7 10 15 20 25 29 39 47 Auxiliary control power supply voltage Image: Supplementation of the supplementat	5				-				-							
HD 1.1 1.5 3 4.1 7 10 15 20 25 29 39 Auxiliary control power supply voltage Image: State of the state of																
ND 1.1 2.1 3 4.1 7 15 20 25 29 39 47 Auxiliary control power supply voltage					-				-							
Auxiliary control power supply voltage - - - Single-phase 380 to 480 V, 50/60 Hz Auxiliary control power supply voltage - - Single-phase 380 to 480 V, 50/60 Hz Auxiliary control power supply voltage - - - Single-phase 380 to 480 V, 50/60 Hz Auxiliary control power supply voltage HHD 100% 70% 40% 20% HD 53% 68% 48% 29% 27% 15% - Builtin 53% 50% 48% 29% 27% 12% - Braking transistor Built-in - - 160 to 200 130 to 200 80 min. 60 min. 40 min. 34.4 min. 16 min. Braking transistor 200 160 to 200 130 to 200 80 min. 60 min. 40 min. 34.4 min. 16 min. Braking resistor [Ω] 200 160 to 200 130 to 200 80 min. 60 min. 40 min. 34.4 min. 16 min. Compliant with EMC Directives. Emission: Category C2. Immunity: 2nd Env. (EN61800-3) Immunity		capacity (with DCR) [kVA] *6													
Adviriety control power subply voltage				ND	1.1	2.1	3	4.1	7	15	20	25	29			
μ HHD 100% 70% 40% 20% Torque *7 HHD 53% 68% 48% 29% 27% 15% HD 53% 68% 48% 29% 27% 15% Braking transistor Built-in 0 50% 48% 29% 27% 12% Braking transistor Built-in Connectable resistance value [Ω] 200 160 to 200 130 to 200 80 min. 60 min. 40 min. 34.4 min. 16 min. Braking resistor [Ω] Option Compliant with EMC Directives. Emission: Category C2. Immunity: 2nd Env. (EN61800-3) Compliant with EMC Directives. Emission: Category C3. Immunity: 2nd Env. (EN61800-3) Immunity: 2nd Env. (EN61800-3) Immunity: 2nd Env. (EN61800-3) DC reactor (DCR) Option Fan cooling Fan cooling Fan cooling Weight [kg(lbs)] 1.5 1.7 2.0 2.2 2.3 5.4 7.5 7.5 11 12 Meight [kg(lbs)] 1.5 1.7 2.0 2.2 2.2 5.3 5.4		Auxiliary control powe	er supply	voltage					_							
μng 53% 68% 48% 29% 27% 15% HD 53% 68% 48% 29% 27% 15% HD 53% 68% 48% 29% 27% 15% ND 53% 50% 48% 29% 27% 12% Braking transistor Built-in 12% 12% 16 <				•		00/	700/		00/				20/	480 V, 5	0/60 Hz	
Index HD 53% 68% 48% 29% 27% 15% ND 53% 50% 48% 29% 27% 12% Braking transistor Built-in 53% 50% 48% 29% 27% 12% Braking transistor Built-in Connectable resistance value [Ω] 200 160 to 200 130 to 200 80 min. 60 min. 40 min. 34.4 min. 16 min. Braking resistor [Ω] Option Compliant with EMC Directives. Emission: Category C2. Immunity: 2nd Env. (EN61800-3) Emission: Category C3. Immunity: 2nd Env. (EN61800-3) Immunity: 2nd Env. (EN61800-3) DC reactor (DCR) Option Option Protective construction (IEC 60529) IP20 enclosed type, UL open type Cooling system Natural cooling Fan cooling 5.4 7.5 7.5 11 12 Weight [kg(lbs)] 1.5 1.7 2.0 2.2 2.2 5.3 5.4 7.5 7.5 11 12									-							
Connectable resistance value [Ω] 200 160 to 200 130 to 200 80 min. 60 min. 40 min. 34.4 min. 16 min. Braking resistor [Ω] Option Compliant with EMC Directives. Emission: Category C2. Immunity: 2nd Env. (EN61800-3) Compliant with EMC Directives. Emission: Category C3. Immunity: 2nd Env. (EN61800-3) Emission: Category C3. Immunity: 2nd Env. (EN61800-3) Immunity: 2nd Env. (EN61800-3) DC reactor (DCR) Option Option Fan cooling Fan cooling Protective construction (IEC 60529) IP20 enclosed type, UL open type Fan cooling 5.3 5.4 7.5 7.5 11 12 Weight [kg(lbs)] 1.5 1.7 2.0 2.2 2.2 5.3 5.4 7.5 7.5 11 12		Torque *7														
Connectable resistance value [Ω] 200 160 to 200 130 to 200 80 min. 60 min. 40 min. 34.4 min. 16 min. Braking resistor [Ω] Option Compliant with EMC Directives. Emission: Category C2. Immunity: 2nd Env. (EN61800-3) Compliant with EMC Directives. Emission: Category C3. Immunity: 2nd Env. (EN61800-3) Emission: Category C3. Immunity: 2nd Env. (EN61800-3) Immunity: 2nd Env. (EN61800-3) DC reactor (DCR) Option Option Fan cooling Fan cooling Protective construction (IEC 60529) IP20 enclosed type, UL open type Fan cooling 5.3 5.4 7.5 7.5 11 12 Weight [kg(lbs)] 1.5 1.7 2.0 2.2 2.2 5.3 5.4 7.5 7.5 11 12	ing															
Connectable resistance value [Ω] 200 160 to 200 130 to 200 80 min. 60 min. 40 min. 34.4 min. 16 min. Braking resistor [Ω] Option Compliant with EMC Directives. Emission: Category C2. Immunity: 2nd Env. (EN61800-3) Compliant with EMC Directives. Emission: Category C3. Immunity: 2nd Env. (EN61800-3) Emission: Category C3. Immunity: 2nd Env. (EN61800-3) Immunity: 2nd Env. (EN61800-3) DC reactor (DCR) Option Option Fan cooling Fan cooling Protective construction (IEC 60529) IP20 enclosed type, UL open type Fan cooling 5.3 5.4 7.5 7.5 11 12 Weight [kg(lbs)] 1.5 1.7 2.0 2.2 2.2 5.3 5.4 7.5 7.5 11 12	rak			ND		50%	48%	29%	27%			12	2%			
Braking resistor [Ω] Option Braking resistor [Ω] Option EMC filter(E3E) Compliant with EMC Directives. Emission: Category C2. Immunity: 2nd Env. (EN61800-3) Compliant with EMC Directives. Emission: Category C3. Immunity: 2nd Env. (EN61800-3) DC reactor (DCR) Option Immunity: 2nd Env. (EN61800-3) Protective construction (IEC 60529) IP20 enclosed type, UL open type Cooling system Natural cooling Fan cooling Weight [kg(lbs)] 1.5 1.7 2.0 2.2 2.3 5.4 7.5 7.5 11 12 Weight [kg(lbs)] [3.3] [3.7] [4.4] [4.9] [12] [12] [17] [17] [24] [26]	Ξ								1							
Compliant with EMC Directives. Compliant with EMC Directives. EMC filter(E3E) Emission: Category C2. Emission: Category C3. Immunity: 2nd Env. (EN61800-3) Immunity: 2nd Env. (EN61800-3) DC reactor (DCR) Option Protective construction (IEC 60529) IP20 enclosed type, UL open type Cooling system Natural cooling Fan cooling Weight [kg(lbs)] 1.5 1.7 2.0 2.2 2.3 5.4 7.5 7.5 11 12 Weight [kg(lbs)] 1.5 1.7 2.0 2.2 2.2 5.3 5.4 7.5 7.5 11 12			ice value	[Ω]		00	160 t	o 200	130 to 200	80 min.	60 min.	40 min.	34.4 min.	16 r	nin.	
EMC filter(E3E) Emission: Category C2. Immunity: 2nd Env. (EN61800-3) Emission: Category C3. Immunity: 2nd Env. (EN61800-3) DC reactor (DCR) Option Immunity: 2nd Env. (EN61800-3) Protective construction (IEC 60529) IP20 enclosed type, UL open type Fan cooling Cooling system Natural cooling Fan cooling Weight [kg(lbs)] 1.5 1.7 2.0 2.2 2.3 5.4 7.5 7.5 11 12 Weight [kg(lbs)] [3.3] [3.7] [4.4] [4.9] [4.9] [12] [12] [17] [17] [24] [26]		Braking resistor [Ω]														
Immunity: 2nd Env. (EN61800-3) Immunity: 2nd Env. (EN61800-3) DC reactor (DCR) Option	-															
DC reactor (DCR) Option Protective construction (IEC 60529) IP20 enclosed type, UL open type Vertex (1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	EMO	J filter(E3E)											1			
Protective construction (IEC 60529) IP20 enclosed type, UL open type Cooling system Natural cooling Fan cooling Weight [kg(lbs)] 1.5 1.7 2.0 2.2 2.2 5.3 5.4 7.5 7.5 11 12 Weight [kg(lbs)] [3.3] [3.7] [4.4] [4.9] [4.9] [12] [17] [17] [24] [26]	DO					∠na Env. (E	=1161800-3)		immunity:	∠na Env. (=1961800-3)			
Natural cooling Fan cooling Weight [kg(lbs)] 1.5 1.7 2.0 2.2 2.2 5.3 5.4 7.5 7.5 11 12 [3.3] [3.7] [4.4] [4.9] [4.9] [12] [17] [17] [24] [26]		. , ,	0 00500	`	· ·		11									
Meight [kg(lbs)] 1.5 1.7 2.0 2.2 2.2 5.3 5.4 7.5 7.5 11 12 [3.3] [3.7] [4.4] [4.9] [4.9] [12] [17] [17] [24] [26]	<u> </u>		-0 60529)	1		JL open typ	1								
[3.3] [3.7] [4.4] [4.9] [4.9] [12] [17] [17] [24] [26]	000	ling system			-				<u> </u>		-				1.5	
	Wei	ght [kg(lbs)]														
	(*4) 0	tondard applicable materia	lippton Full 1	Tootric 4 :::												

(1) Standard applicable motor indicates Fuji Electric 4-pole standard motors. Select a motor not only based on inverter output (kW), but also so that the output rated current is greater than the motor rated current.
(2) The rated capacity indicates 220 V for the 200V series, and 440 V for the 400V series.
(3) It is not possible to output a voltage higher than the power supply voltage.
(4) Setting the carrier frequency (F26) to the following value or above requires current derating. HHD spec. of types FRN0002E3]-4G to FRN0012E3]-4G 8 kHz FRN0022E3]-4G to FRN0072E3]-4G 10 kHz HND spec. of types FRN0002E3]-4G to FRN0012E3]-4G 8 kHz FRN0022E3]-4G to FRN0072E3]-4G 10 kHz HD ND spec. of types FRN0002E3]-4G to FRN0012E3]-4G 8 kHz FRN0022E3]-4G to FRN0072E3]-4G 10 kHz
(*5) This indicates the estimated value if the power supply capacity is 500 kVA (10 times inverter capacity if inverter capacity exceeds 50 kVA), and the motor is connected to a power supply of %X = 5%.
(*6) This indicates the capacity when the motor is equipped with a DC reactor (DCR).
(*7) This is the average braking torque when performing individual operation. (This will vary based on the motor efficiency.)
(*8) Interphase unbalance ratio (%) = (Max. voltage [V] - min. voltage [V]/Three-phase average voltage [V] x 67 (see IEC/EN 61800-3). If using the motor with an unbalance ratio of 2 to 3%, use an AC reactor (ACR: option).

High performance Standard type Inverter

FRFN

Single-phase 200V

Basic type

ltem				Specification					
Тур	e(FRNE3S-7	'G) *10		0001	0002	0004 *11	0006 *11	0010 *11	0012 *11
			kW	0.1	0.2	0.4	0.75	1.5	2.2
0 4		HHD	HP	1/8	1/4	1/2	1	2	3
	ndard applicable or *1	HND	kW	0.2	0.4	0.55	1.1	2.2 *8	3 *9
			HP	1/4	1/2	3/4	1.5	3	4
	Rated capacity [kVA]	*0	HHD	0.4	0.6	1.1	1.9	3.0	4.2
		2	HND	0.5	0.7	1.3	2.3	3.7	4.6
	Rated voltage [V] *3			Three-phase 200 to	240 V (with AVR fu	nction)	·		
	Data d aumant [A] *4		HHD	1	1.6	3	5	8	11
s	Rated current [A] *4		HND	1.2	1.9	3.5	6	9.6	12
ting	Overload current rati	na [A]	HHD	150% for 1 minute,	200% for 0.5 secon	ds	1		
rai	(permissible overload		HND	120% for 1 minute					
Output ratings			HHD	-10 to +55 °C [14 to (current derating ne		55 °C [122 to 131 °F]] range)		
	Ambient temperature	!	HND	Type of 0004 to 001	cessary in +50 to +5 2 -10 to +50 °C [1	55 °C [122 to 131 °F] 4 to 122 °F] 50 °C [104 to 122 °F]			
	Rated frequency [Hz]			50 / 60 Hz					
	Voltage, frequency			Three-phase 200 to	240 V, 50/60 Hz				
	Voltage, frequency flu	uctuation		Voltage: +10 to -10° Frequency: +5 to -5		ance ratio: 2% or les	ss) ,		
gs		With	HHD	1.1	2	3.5	6.4	11.6	17.5
tin		DCR	HND	2.2	3.7	4.6	9.4	17.9	25
nput ratings	Rated current [A] *5	Without	HHD	1.8	3.3	5.4	9.7	16.4	22
npr		DCR	HND	3.3	4.9	7.3	13.8	20.2	26
- 1	Required power supp	blv	HHD	0.3	0.4	0.7	1.3	2.4	3.5
	capacity (with DCR)		HND	0.5	0.8	1.0	1.9	3.6	5.0
	Auxiliary control pow	er supply	voltage			_	I		
		,	HHD	150)%	10	0%	70%	40%
b	Torque *7		HND	75		73%	68%	48%	29%
Braking	Braking transistor			Built-in					
B	Connectable resistan	ice value	[Ω]		100 t	o 120		40 to	120
	Braking resistor [Ω]			Option					
_	reactor (DCR)			Option					
_	ective construction (IE	EC 60529)	IP20 enclosed type	UL open type				
	ling system		/	Natural cooling	· [· · · · · · ·		Fan cooling		
	ght [kg(lbs)]			0.5	0.5 [1.1]	0.6 [1.3]	0.9 [2.0]	1.4 [3.1]	1.7 [3.7]

(*1) Standard applicable motor indicates Fuji Electric 4-pole standard motors. Select a motor not only based on inverter output (kW), but also so that the output rated current is greater than the motor rated current.
(*2) The rated capacity indicates 220 V for the 200V series, and 440 V for the 400V series.
(*3) It is not possible to output a voltage higher than the power supply voltage.
(*4) Setting the carrier frequency (F26) to the following value or above requires current derating. HHD spec.; 8 kHz HND spec.; 8 kHz
(*5) This indicates the estimated value if the power supply capacity is 500 kVA (10 times inverter capacity if inverter capacity exceeds 50 kVA), and the motor is connected to a power supply of %X = 5%.
(*6) This indicates the capacity when the motor is equipped with a DC reactor (DCR).
(*7) This is the average braking torque when performing individual operation. (This will vary based on the motor efficiency.)
(*8) Input voltage is less than 220V, standard applicable motor is 2.0KW.
(*10) HND specifications, set F80=4.
(*11) For FRN0004E3S-7G to FRN0012E3N-7G to FRN0012E3N-7G HND specifications. If the ambient temperature is 40°C or higher, the output current must be derated by 2%/PC.

Standard specifications

Single-phase 200V

Ethernet built-in type

Item	1			Specification					
Тур	e(FRNE3N-7	′G) *10		0001	0002	0004 *11	0006 *11	0010 *11	0012 *11
		ннр	kW	0.1	0.2	0.4	0.75	1.5	2.2
Ctor	dard applicable	ппи	HP	1/8	1/4	1/2	1	2	3
	ndard applicable or *1	HND	kW	0.2	0.4	0.55	1.1	2.2 *8	3 *9
			HP	1/4	1/2	3/4	1.5	3	4
	Rated capacity [kVA]	*0	HHD	0.4	0.6	1.1	1.9	3.0	4.2
	naleu capacity [KVA]	2	HND	0.5	0.7	1.3	2.3	3.7	4.6
	Rated voltage [V] *3			Three-phase 200 to	240 V (with AVR fu	nction)			
	Detect ourrent [A] *4		HHD	1	1.6	3	5	8	11
S	Rated current [A] *4		HND	1.2	1.9	3.5	6	9.6	12
ting	Overload current rati	ng [A]	HHD	150% for 1 minute,	200% for 0.5 secon	ds			
t ra	(permissible overload	d time)	HND	120% for 1 minute					
Output ratings			HHD	-10 to +55 °C [14 to (current derating ne		55 °C [122 to 131 °F] range)		
	Ambient temperature	!	HND	-10 to +55 °C [14 to (current derating ne Type of 0004 to 001 (current derating ne	cessary in +50 to + 2 -10 to +50 °C [1	4 to 122 °F]			
	Rated frequency [Hz]			50 / 60 Hz					
	Voltage, frequency			Three-phase 200 to	240 V, 50/60 Hz				
	Voltage, frequency flu	uctuation		Voltage: +10 to -10° Frequency: +5 to -5		ance ratio: 2% or le	ss) ,		
gs		With	HHD	1.1	2	3.5	6.4	11.6	17.5
atin	Rated current [A] *5	DCR	HND	2.2	3.7	4.6	9.4	17.9	25
Input ratings	Raled current [A] 5	Without	HHD	1.8	3.3	5.4	9.7	16.4	22
ldu		DCR	HND	3.3	4.9	7.3	13.8	20.2	26
	Required power supp	bly	HHD	0.3	0.4	0.7	1.3	2.4	3.5
	capacity (with DCR) [[kVA] *6	HND	0.5	0.8	1.0	1.9	3.6	5.0
	Auxiliary control powe	er supply	voltage			_			
	Tereue *7		HHD	150	0%	10	0%	70%	40%
g	Torque *7		HND	75	%	73%	68%	48%	29%
Braking	Braking transistor			Built-in				·	
ň	Connectable resistan	ice value	[Ω]		100 t	o 120		40 to	120
	Braking resistor [Ω]			Option				·	
C I	reactor (DCR)			Option					
rot	ective construction (IE	EC 60529)	IP20 enclosed type	UL open type				
200	ling system			Natural cooling			Fan cooling		
Nei	ght [kg(lbs)]			0.5	0.5 [1.1]	0.7 [1.5]	0.9	1.5 [3.3]	1.7 [3.7]

 (*1) Standard applicable motor indicates Fuji Electric 4-pole standard motors. Select a motor not only based on inverter output (kW), but also so that the output rated current is greater than the motor rated current.

 (*2) The rated capacity indicates 220 V for the 200V series, and 440 V for the 400V series.

 (*3) It is not possible to output a voltage higher than the power supply voltage.

 (*4) Setting the carrier frequency (F26) to the following value or above requires current derating.

 HHD spec.; 8 kHz

 HND spec.; 4 kHz

 (*5) This indicates the estimated value if the power supply capacity is 500 kVA (10 times inverter capacity if inverter capacity exceeds 50 kVA), and the motor is connected to a power supply of %X = 5%.

 (*6) This indicates the capacity when the motor is equipped with a DC reactor (DCR).

 (*7) This is the average braking torque when performing individual operation. (This will vary based on the motor efficiency.)

 (*8) Input voltage is less than 220V, standard applicable motor is 2.0 kW.

 (*10) HND specifications, set F80=4.

 (*11) For FRN0004E3S-7G to FRN0012E3N-7G to FRN0012E3N-7G HND specifications. If the ambient temperature is 40°C or higher, the output current must be derated by 2%/PC.

High performance Standard type Inverter

Ace

FRFNIC-

Single-phase 200V

EMC filter built-in type

Item	1			Specification								
Тур	e(FRN E3E-7	G)		0001	0002	0003	0005	0008	0011			
Star	ndard applicable	ннр	kW	0.1	0.2	0.4	0.75	1.5	2.2			
mot	or *1	ппр	HP	1/8	1/4	1/2	1	2	3			
	Rated capacity [kVA]	*2	HHD	0.4	0.6	1.1	1.9	3.0	4.2			
S	Rated voltage [V] *3			Three-phase 200 to	240 V (with AVR fu	nction)						
ting	Rated current [A] *4		HHD	1	1.6	3	5	8	11			
Output ratings	Overload current ratir (permissible overload		HHD	150% for 1 minute,	200% for 0.5 secon	ds						
Out	Ambient temperature		HHD	-10 to +55 °C [14 to (current derating ne		55 °C [122 to 131 °F]	range)					
	Rated frequency [Hz]			50 / 60 Hz								
	Voltage, frequency			Three-phase 200 to	240 V, 50/60 Hz							
	Voltage, frequency flu	uctuation		Voltage: +10 to -10 Frequency: +5 to -5		ance ratio: 2% or les	s),					
Input ratings	Rated current [A] *5	With DCR	HHD	1.1	2	3.5	6.4	11.6	17.5			
nput r	hated current [A] 5	Without DCR	HHD	1.8	3.3	5.4	9.7	16.4	22			
	Required power supp capacity (with DCR) [HHD	0.3	0.4	0.7	1.3	2.4	3.5			
	Auxiliary control powe	er supply	voltage			-						
5	Torque *7		HHD	15	0%	100	0%	70%	40%			
Braking	Braking transistor			Built-in								
Bra	Connectable resistan	ce value	[Ω]		100 t	o 120		40 to	120			
_	Braking resistor [Ω]			Option								
DC	reactor (DCR)			Option								
EMO	C filter(E3E)			Emission: Category	Compliant with EMC Directives. Emission: Category C2. Immunity: 2nd Env. (EN61800-3)							
Prot	ective construction (IE	C 60529)	IP20 enclosed type	UL open type							
Coo	ling system			Natural cooling					Fan cooling			
Wei	ght [kg(lbs)]			0.6 [1.3]	0.6 [1.3]	0.8 [1.8]	1.2 [2.6]	2.0 [4.4]	2.2 [4.9]			

 (*1)
 Standard applicable motor indicates Fuji Electric 4-pole standard motors. Select a motor not only based on inverter output (kW), but also so that the output rated current is greater than the motor rated current.

 (*2)
 The rated capacity indicates 220 V for the 200V series, and 440 V for the 400V series.

 (*3)
 It is not possible to output a voltage higher than the power supply voltage.

 (*4)
 Setting the carrier frequency (F26) to the following value or above requires current derating. HND 8 kHz

 (*5)
 This indicates the estimated value if the power supply capacity is 500 kVA (10 times inverter capacity if inverter capacity exceeds 50 kVA), and the motor is connected to a power supply of %X = 5%.

 (*6)
 This indicates the estimated value if the power supply capacity is 500 kVA (10 times inverter capacity if inverter capacity exceeds 50 kVA), and the motor is connected to a power supply of %X = 5%.

 (*7)
 This indicates the capacity when the motor is equipped with a DC reactor (DCR).

 (*7)
 This is the average braking torque when performing individual operation. (This will vary based on the motor efficiency.)

 (*8)
 Input voltage is less than 220V, standard applicable motor is 2.7kW.

 (*10)
 HND specifications, set F80=4.

 (*11)
 EMC filter built-in type is only available in HHD specification.

Common Specifications

	Item			Description	Remarks
Ma	aximum output frequency	· ·	with speed sensor, this	z, the inverter will stop with overspeed protection.) is determined by the maximum PG option card input frequency, number of motor poles,	
Ra	so fraguancy	5 to 599 Hz vari	· .		
	se frequency mber of motor poles setting	2 to 128 poles	able		
	arting frequency	· · ·	ariable (0.0 Hz under ve	ector control)	
		FRN****E3S/N-2 - 0.75 to 16 kHz	variable setting	HHD specification : **** = 0001 ~ 0115 HND specification : **** = 0001 ~ 0010 0030 ~ 0088	
		- 0.75 to 10 kHz	variable setting	HND specification : **** = 0012 ~ 0020 0115	_
		FRN****E3S/N/E - 0.75 to 16 kHz	-	HHD specification : **** = 0002 ~ 0072 HND specification : **** = 0002 ~ 0059 HD specification : **** = 0002 ~ 0059	
Ca	rrier frequency	- 0.75 to 10 kHz		HND specification : **** = 0072 HD specification : **** = 0072 ND specification : **** = 0002 ~ 0059	
		- 0.75 to 6 kHz FRN****E3S/N-7 - 0.75 to 16 kHz - 0.75 to 10 kHz	'G : variable setting	ND specification : **** = 0072 HHD specification : **** = 0001 ~ 0012 HND specification : **** = 0001 ~ 0012	-
		FRN****E3E-7G	variable setting	HHD specification : **** = 0001 ~ 0011	-
			equency may automatically k ic lowering function can be o	ower depending upon the ambient temperature or the output current to protect the inverter. disabled.)]
Frequency setting resolution		 Analog setting Digital setting: 	: 1/3000 of maximum o 0.01 Hz (99.99 Hz or le		
	During sensor-equipped V/f control*1 During sensor-equipped	Speed control range	,	imum speed: Base speed) istant torque region: Constant power region)	
S	dynamic torque vector control*2	Speed control accuracy		hin ±0.2% of the maximum output frequency (25 ±10°C) hin ±0.01% of the maximum output frequency (-10 to +50°C)	
Induction motors	During sensorless vector	Speed control range	•1:200 (Minimum spe •1:2 (Constant torq	ed: Base speed) ue region: Constant power region)	
Inductio	control	Speed control accuracy		hin ±0.5% of the maximum output frequency (25 ±10°C) hin ±0.5% of the maximum output frequency (-10 to +50°C)	
	During sensor-equipped	Speed control range	•1:1500 (Minimum sp •1:2 (Constant to	veed: Base speed) rque region: Constant power region)	
	vector control	Speed control accuracy		hin ±0.2% of the maximum output frequency (25 ±10°C) hin ±0.01% of the maximum output frequency (-10 to +50°C)	
ors	During sensorless vector			e region: Constant power region)	
ous motors	control	Speed control accuracy	•Digital settings : With	hin ±0.5% of the Base speed (25 ±10°C) hin ±0.5% of the Base speed (-10 to +50°C)	
Synchronous	During sensor-equipped vector control	Speed control range		rque region: Constant power region)	
S		Speed control accuracy	•Digital settings : With	hin ±0.2% of the maximum output frequency (25 ±10°C) hin ±0.01% of the maximum output frequency (-10 to +50°C)	
		Analog setting : ±0.2% or less o (at 25 ±10 °C) (7	f maximum output frequ	uency	VF IMPG-VF IMPG-DTV IMPG-VC PMPG-VC
	beed control accuracy	Digital setting : ±0.01% or less (at -10 to +50 °C	of maximum output free C) (14 to 122 °F)	quency	
		Analog setting : ±0.5% or less o (at 25 ±10 °C) (7	f maximum output freq	uency	IM-SVC PM-SVC
			f maximum output freq C) (14 to 122 °F)	uency	

Note) Depending on the inverter type, specifications may vary.

Item	Description	Remarks
	V/f control	VF
	Dynamic torque vector control	DTV
	V/f control with slip compensation	SCVF
Control method	V/f control with speed sensor (PG option card required)	IMPG-VF *2
Control method	Dynamic torque vector control with speed sensor (PG option card required) Vector control with speed sensor (PG option card required)	IMPG-DTV *2 IMPG-VC *2
	Vector control without speed sensor	IM-SVC
	Vector control with magnetic pole position sensor (PG option card required)	PMPG-VC *2
	Vector control without magnetic pole position sensor	PM-SVC
	- The base frequency and maximum output frequency are common, and the voltage can be set between 80 and 240 V (200V series) and 160 and 500 V (400V series).	
Voltage /	- Linear V/f setting (3 points) :	
frequency characteristics	The voltage can be set freely from 0 to 240 V (200V series) and 0 to 500 V (400V series), and the frequency can be set from 0 to 599 Hz.	
	- AVR control can be turned ON or OFF.	
Torque boost	 Auto torque boost (for constant torque load) Manual torque boost: The torque boost value can be set between 0.0 and 20.0%. The applicable load can be selected. (for constant torque load, quadratic-torque load) 	
Starting torque (HHD specifications)	At 200% or higher/Setting frequency 0.5 Hz or higher, V/f control (base frequency 50 Hz, slip compensation, automatic torque boost)	
	- Key operation :	*2
	Run/stop with 🕬 and 👓 keys (standard keypad)	
	Run/stop with FWD / REV and STOP keys (multi-function keypad: option)	
	- External signals :	*2
Running operation	Forward (reverse) rotation run/stop commands [2-wire/3-wire operation], (digital input "HLD", "DIR", "FWD", "REV") coast to stop command, external alarm, alarm reset, etc.	2
	- Link setting :	
	Setting by RS-485 communication (E3S), Setting by field bus communication (Option : E3S / Built-in : E3N)	
	- Run command switching :	*2
	Remote/local switching, link switching	*2
	- Keypad : Setting possible with () () keys	2
	- External potentiometer : Using external frequency command potentiometer	
2	(external resistor of 1 to 5 k Ω , 1/2 W)	
	 Analog input : 10 to +10 VDC (-5 to +5 VDC) / -100 to +100% (terminal [12]) 0 to +10 VDC (0 to +5 VDC)/0 to +100% (terminal [12], [C1] (V2 function)) 0 to +10 VDC (0 to +5 VDC)/-100 to +100% (terminal [12], [C1] (V2 function)) 4 to 20 mA DC/0 to 100% (terminal [C1] (C1 function)) 4 to 20 mA DC/0 to 100% (terminal [C1] (C1 function)) 0 to 20 mA DC/0 to 0 to 100% (terminal [C1] (C1 function)) 0 to 20 mA DC/-100 to 0 to 100% (terminal [C1] (C1 function)) 0 to 20 mA DC/-100 to 0 to 100% (terminal [C1] (C1 function)) 10 to 20 mA DC/-100 to 0 to 100% (terminal [C1] (C1 function)) 10 to 20 mA DC/-100 to 0 to 100% (terminal [C1] (C1 function)) 11 function] and IV2 function] of terminal [C1] (C1 function) 	
	- UP/DOWN operation:	
	Frequency can be increased or decreased while the digital "UP" or "DOWN" signals are ON. It is possible to select whether to record or clear the current frequency when the power is turned OFF. The frequency recorded with digital input "STZ" can be cleared.	
	- Multistep frequency selection : Selectable from 16 different frequencies (step 0 to 15)	
Frequency settings	 Pattern operation : The inverter can be run automatically according to the previously specified run time, rotation direction, acceleration / deceleration time and reference frequency. Up to 7 stages can be set. 	
	 Link setting1 Setting is possible with RS-485 communication (built-in as standard). Setting is possible with field bus communication (option:E3S / Built-in:E3N). 	
	 Frequency setting switching : The frequency setting can be switched between two types with an external signal (digital input "Hz2/Hz1"). 	*2
	Remote/local switching ("LOC") and link switching ("LE") are also possible. - Auxiliary frequency setting : Terminal [12] and [C1] inputs can be selected as the auxiliary frequency setting and added to the main settings.	
	- Operation at specified ratio : A ratio value can be set with analog input signals (terminal [12] and [C1]).	
	0 to 10 VDC/4(0) to 20 mA/0 to 200% (variable) Inverse operation : The following settings can be specified with external commands (terminals) : - Can be switched from "0 to +10 VDC/0 to 100%" to "+10 to 0 VDC/0 to 100%" (terminal [12] / [C1] (V2 function)) Can be switched from "4 to 20 mA DC / 0 to 100%" to "20 to 4 mA DC / 0 to 100%" (terminal [C1] (C1 function)) Can be switched from "0 to 20 mA DC / 0 to 100%" to "20 to 0 mA DC / 0 to 100%" (terminal [C1] (C1 function)).	
	- Pulse train input (standard) :	*2
	Pulse input "PIN" = Terminal [X5], rotational direction "SIGN" = input terminal other than [X5]. - Maximum input pulse When connected to complementary output transmitter: 100 kHz	

Common Specifications

Item	Description	Remarks
Frequency settings	Pulse train input (option): A PG option is required. CW / CCW pulse, pulse + rotation direction - Maximum input pulse When connected to complementary output transmitter: 100 kHz When connected to open collector output transmitter: 30 kHz	*2
Acceleration / deceleration time	 Setting range : 0.00 to 6000 seconds Switching : The four types of acceleration/deceleration time can be set or selected individually (switchable during operation). Acceleration/deceleration pattern : Linear acceleration/deceleration (week, Arbitrary), Curvilinear acceleration/deceleration (max. acceleration/deceleration at rated output) Deceleration/deceleration (max. acceleration/deceleration at rated output) Deceleration mode (coast to stop) : Coast to stop when run command turned OFF. Deceleration ime for forced stop : Deceleration stop in exclusive deceleration time by forced stop (STOP). During forced stop operation, S-curve acceleration/deceleration is disabled. Dedicated acceleration/deceleration time for jogging It is possible to switch between acceleration/deceleration time = 0 with acceleration/deceleration operation cancel "BPS". 	
Frequency limiter (upper limit, lower limit frequency)	 Both the upper limit frequency and lower limit frequency are set in Hz values. "Continue to run" or "Decelerate to a stop" selectable when the reference frequency drops below the lower limit. (disabled under vector control) Setting is possible with analog input (terminal [12], [C1]). 	
Frequency/ PID command bias	The frequency setting and PID command bias can be set independently. Frequency setting: (setting range: 0 to ±200%) PID command (setting range: 0 to ±100%)	
Analog input	 Gain: Setting range: 0 to 400% Offset: Setting range from -5.0 to +5.0% Filter: Setting range: 0.00 s to 5.00 s Polarity selection (selection possible from ± or +) 	
Jump frequency	Six points and their common jump width (0 to 30.0 Hz) can be set.	
Timed operation	The inverter runs and stops for only the operating time set with the keypad. (1 cycle operation)	*2
Jogging operation	 Operation with Run key (standard keypad), Run / Rev keys (multi-function keypad), digital contact inputs FWD/REV or digital contact inputs "FWD", "REV" (dedicated acceleration time individual setting, dedicated frequency setting) Jogging operation can be performed with independent commands "FJOG" for forward rotation jogging and "RJOG" for reverse rotation jogging without "FWD", "REV". 	*2
Auto-restart after momentary power failure	Trip after power failure : Immediate trip after power failure Trip after power restoration : Motor coasts to a stop after power failure, and trip occurs after power restoration. Trip after deceleration stop : Motor decelerates and stops after power failure, and trips after stopping. Continue to run : Load inertia energy is used to continue operation. Start at frequency selected before momentary power failure : Motor coasts to stop after power failure, and starts at frequency at time of power failure after power restoration. Start at starting frequency : Motor coasts to stop after power failure, and starts at starting frequency after power restoration. Start at frequency selected after power restoration : Motor coasts to stop after power failure, and starts at starting frequency after power restoration.	
Current limiting (hardware current limiter)	Current is limited with hardware to prevent overcurrent trip due to high-speed load fluctuations or momentary power failure which cannot be handled with software current limiting. (This limiter can be canceled.)	
Current limiting (software current limiter)	 Automatically reduces the frequency so that the output current becomes lower than the preset operation level. (This limiter can be canceled.) The operation can be selected (operation at constant speed only, operation when accelerating and at constant speed). 	
Operation by commercial power supply	 - 50/60 Hz can be output with a switch to commercial power supply command ("SW50", "SW60"). - A commercial switching sequence is built in. 	
Slip compensation	 Motor slip is compensated to keep the motor speed to a reference speed, regardless of the load torque. The slip compensation responsiveness (time constant) can be adjusted. 	
Droop control	- This function is used to adjust the speed of each motor individually to balance load torque on machines driven with multiple motor systems.	
Torque limiting Torque current limiting Power limiting	The output torque or output torque current is controlled so that the output torque is equal to or less than the limiting value set beforehand The value can be switched between torque limit value 1 and torque limit value 2 Torque limit values can be set individually for each of the four quadrants Torque limiting and torque current limiting can be selected Torque limiting is possible with analog input.	IMPG-VC PMPG-VC PM-SVC
Overload stop	 If the detected torque or current exceeds the preset value, the motor can be stopped with a deceleration stop or coast to stop, or when contact is made with the stopper. Operating conditions can be set in operation mode (while the motor is running at constant speed and while decelerating/while the motor is running at constant speed/all modes). The torque during stopper contact can be adjusted. 	

Note) Depending on the inverter type, specifications may vary.

	Item	Description	Remarks
	nem	- PID controller for process control/dancer control	Remarks
	PID control	 Normal/inverse operation switching Commands: keypad, analog input (terminal [12], [C1]), multi-step settings (selection possible from 3 points), RS-485 communication, field bus communication (Option : E3S/E3E / Built-in : E3N) Feedback values: analog input (terminal [12], [C1]) Alarm output (absolute value alarm, deviation alarm) Low liquid level stop function (pressurized operation possible before low liquid level stop) Anti-reset wind-up function Output limiter Integral/differential reset/integral hold function PID constant auto tuning function for process control PID controller 	
	Retry	 Even if a protective function subject to a retry is triggered, an attempt is made to automatically cancel the trip condition up to the number of set times to resume operation without outputting an integrated alarm. The number of attempts can be set up to 20 times (can be set with function code) 	
	Auto search	The motor speed is estimated before startup, and the motor is started without ever stopping the motor while it is idling. (Motor constant tuning required : offline tuning)	
	Anti-regenerative control	 If the DC link bus voltage/torque calculation value reach or exceed the anti-regenerative control level when the motor is decelerating, the deceleration time is automatically extended to avoid an overvoltage trip. (Forced deceleration can be set at three or more times the deceleration time.) If the torque calculation value reaches or exceeds the anti-regenerative control level during constant speed operation, overvoltage tripping is avoided by performing control to raise the frequency. 	
	Deceleration characteristic (improved braking ability)	 During deceleration, this function increases the motor energy loss and decreases the regenerative energy returned to avoid an overvoltage trip. Setting is also possible when using in combination with AVR cancel.) 	
	Auto energy saving operation	Controls the output voltage in order to minimize the total motor and inverter power loss at constant speed.	
	Overload prevention control	If the surrounding temperature or IGBT junction temperature increases due to an overload, the inverter lowers the output frequency to avoid an overload.	
	Battery operation	Cancels the undervoltage protection so that the inverter under an undervoltage condition runs the motor with battery power. (FRN0088E32G,FRN0115E32G,FRN0059E34G,FRN0072E34G)	
	Offline tuning	 Measures the motor constant when the motor is stopped or rotating, and sets it in a motor constant function code. (IM motors, PM motors) Mode in which IM motor %R1 and %X only are tuned 	
	Online tuning	Mode in which PM motor magnetic pole position offset is tuned Automatically adjusts motor parameters while the motor is running to prevent fluctuations in motor speed due to rises in motor	PMPG-VC *2 DTV
		temperature.	
	Cooling fan ON-OFF control	 Detects inverter internal temperature and stops cooling fan when the temperature is low. Available to output a fan control signal to an external device. 	
Control	Motor 1 ,2 settings	 Switching is possible between 2 motors. It is possible to set the base frequency, rated current, torque boost, electronic thermal slip compensation, ASR, notch filter, starting frequency, stopping frequency, thermistor operation selection, and speed display coefficients, etc. as the data for motors 1 to 2. Cumulative motor run count, start count 	
	Motor selection	Equipped with parameters for Fuji standard motors. Optimum motor parameters can be set by setting the type and capacity. - Fuji standard motors, 8-series - Typical HP unit motors - Fuji premium efficiency motors (MLK1/MUL1 series) - Fuji synchronous motors (GNB2 series, GNP1 series)	
	Universal DI	Transfers the status of an external digital signal connected with the general-purpose digital input terminal to the host controller.	
	Universal DO	Outputs a digital command signal sent from the host controller to the general-purpose digital output terminal.	
	Universal AO Speed control	Outputs an analog command signal sent from the host controller to the analog output terminal Selectable among the four set of the auto speed regulator (ASR) parameters A vibration suppression notch filter can be set. (for IMPG-VC, PMPG-VC only) (A PG option card is required.)	MPG-VF IMPG-DTV IMPG-VC IM-SVC PMPG-VC PM-SVC *2
	Line speed control	Regulates the motor speed to keep the peripheral speed constant even if the roll winding diameter changes on machines such as winders and unwinders. Tension can be controlled when used in combination with PID control. (A PG option card is required.)	IMPG-VF IMPG-DTV IMPG-VC *2
	Master-follower operation	Two motors can be run synchronously using a pulse generator (PG). (A PG option card is required.)	IMPG-VF IMPG-DTV IMPG-VC *2
	Pre-excitation	 Excitation is carried out to create the motor flux before starting the motor. (A PG option card is required.) 	IMPG-VC IM-SVC *2
	Zero speed control	- Zero speed control is performed by forcibly zeroing the speed command. (A PG option card is required.)	IMPG-VC PMPG-VC *2
	Servo lock	Stops the inverter and holds the motor at the stopped position. (A PG option card is required.)	IMPG-VC PMPG-VC *2
	DC braking	- Applies DC current to the motor at the operation start time or at the time of inverter stop to generate braking torque.	-
	Mechanical brake control	 Applies De current to the informative operation start time of at the time of inverter stop to generate braking torque. It is possible to output mechanical brake control signals with the brake ON/OFF timing adjusted by the output current, torque commands, output frequency and timer. The output timing of control signals can be adjusted individually when performing forward rotation (hoisting) and reverse rotation (lowering). Errors can be detected with mechanical brake operation check input signals. 	Other than PM-SVC
lote	Depending on the inverter type, spe		

Common Specifications

	Item	Description	Remarks
	Torque control	 Analog torque commands/torque current commands possible Speed limit function is provided to prevent the motor from becoming out of control. Torque bias (with analog setting, digital setting) possible 	IMPG-VC IM-SVC PMPG-VC
	Rotation direction restriction	Select either of reverse or forward rotation prevention.	
	Condensation prevention	Current flows automatically when the motor is stopped, and the motor temperature is raised to prevent condensation.	
	Customization logic	It is possible to select or connect digital logic circuits or analog operation circuits with digital/analog I/O signals, configure a simple relay sequence, and operate it freely. (Max. of 260 steps)	
Control	Positioning control	Feedback pulses are counted from the preset count start point, and the motor automatically decelerates to the creep speed and stops at the target stop point. (A PG option card is required.)	IMPG-VF IMPG-DTV IMPG-VC *2
0	Orientation function	Positioning function of rotating bodies such as the main axes and turntables of machine tools Capable of setting stop target position using function codes (8 points) (PG option card required)	
	Favorites Function code	The function codes can be registered in "Favorites" and displayed. (Applicable to all function codes)	*2
	Data initialization	All function codes and limited function codes can be initialized. (related to each motor parameter, the exception of communication function, related to the customizable logic, registered in "Favorites")	
	Start check function	To ensure safety, it is available to check for the existence of run commands when turning the power ON, when resetting alarms, and when changing the run command method, and display an alarm if a run command has been input.	
-	Destination setting	The factory default values such as voltage, frequency, and other function codes can be changed based on whether the machine is being shipped for use in Japan, Asia, China, Europe, USA, Taiwan, or East Asia. This setting is not necessary for Japanese model or Chinese model.	
	Multifunction key During the operation mode the "SHIFT" key on standard keypads (TP-M3) and "M/SHIFT" key on option keypad (TP-E2) of be used as an input source to activate the input terminal function like the X terminal. Any function is not assigned as a factory default.		
	During operation and stop	Speed monitor (set frequency, output frequency, motor rotation speed, load rotation speed, feed speed (line speed), % display speed), output current [A], output voltage [V], torque calculation value [%], power consumption [kW], PID command value, PID feedback value, PID output, load factor [%], motor output [kW], torque current (%), flux command (%) analog input monitor, cumulative power, constant dimension feed time [min], remaining time when timer operation is enabled [s], etc.	
	Cumulative operating conditions	 Displays cumulative inverter operating time, cumulative electric energy (watt-hours), and cumulative motor operating time/ startup count (by motor) Outputs a forecast when the preset maintenance time and startup count are exceeded 	
	When trip occurs	Shows the cause of a trip	
Display	When warning appears	 Shows a warning cause. When the cause is removed, it is recorded in the warning history and the display disappears. Stores and displays the cause (code) for up to the past 6 alarms in the light alarm history. 	
	During operation and trip	 The cause up to The last ten faults can be stored and displayed with codes. Details of all relevant data when a fault occurs is also stored and displayed for up to The last four faults. Capable of displaying the date in the history by using the clock function (TP-A2SW) 	
	Inverter lifetime alarm	 Deterioration diagnosis can be carried out for main circuit capacitors, electrolytic capacitors on PCBs, cooling fans, and IGBTs, lifetime alarms can be displayed, and data can be output externally. Warning information can be displayed and output externally if the maintenance time or startup count set beforehand is exceeded. Operating temperature: 40 °C (104 °F) 	*2
	Overcurrent protection	Stops the inverter to protect it from overcurrent caused by an overload.	
	Short circuit protection	Stops if the inverter detects an overcurrent due to a short circuit in the output circuit.	00 1 002 003
	Ground fault protection	Stops if the inverter detects an overcurrent due to a short circuit in the output circuit. It may not be detected at powered if an inverter output is under the ground fault status.	
	Overvoltage protection	Stops the inverter if a DC link bus circuit overvoltage (400V series: 800 VDC, 200V series: 400 VDC) is detected. The inverter cannot be protected if an excessively large voltage is applied by accident.	001002003
	Undervoltage protection	Stops the inverter if a drop in DC link bus voltage (400V series: 400 VDC, 200V series: 200 VDC) is detected. However, this is disabled based on the restart after momentary power failure setting. Furthermore, operation is possible (regenerative operation only) at a voltage level lower than that above when performing battery operation.	LU
	Input phase loss protection	Stops the inverter if input phase loss or input phase voltage unbalance is detected. The input phase loss protection may not work under light load or with DC reactor.	L in
su	Output phase loss protection	Stops the inverter if inverter output phase loss is detected during operation. This protective function also functions during auto tuning and during magnetic pole position tuning. (Operation selection possible)	OPL
Ictio		Stops the inverter if a cooling fan fault, or cooling fin overheating when an overload occurs is detected.	08 nua
g fur	Overheat protection	Stops the inverter if a cooling fan fault, or inverter unit internal overheating when an overload occurs is detected. Stops the inverter if inverter unit internal charging resistor overheating is detected.	0X3 0X6
etecting		By setting the braking resistor electronic thermal overload relay function, the inverter is stopped to protect the braking resistor from overheating.	dbH
Protective/detecting functions	Inverter overload protection	Stops the inverter if overheating is detected by calculating the IGBT internal temperature from the output current and detected internal temperature.	OLU
Prote	External alarm input	Stops the inverter and displays an error if a digital input signal (THR) is input.	OH2
	Charging circuit fault	Stops the inverter and displays an error if an inverter charging circuit error is detected.	P6F
	Braking transistor fault	Stops the inverter and displays an error if a braking transistor error is detected.	дья
	Motor 1 overload Motor 2 overload (Electronic thermal)	Stops the inverter if a motor overload is detected by setting the electronic thermal. Protects general-purpose motors and inverter motors in the entire frequency range. (The operation level and thermal time constant (0.5 to 75.0 minutes) can be set.)	OL 1 OL 2
	PTC thermistor	The motor temperature is detected by the PTC thermistor, and the inverter is stopped if overheating is detected. To enable this function, connect the PTC thermistor between terminals [C1] and [11], and enable the switch on the control board.	084
	Memory error	When the power is turned ON, a data check is performed when writing data, and an error is displayed if a memory error is detected.	Er I

Note) Depending on the inverter type, specifications may vary.

Main application	
	nomenclature

	Description	Remarks
Keypad communication error	Stops the inverter and displays an error if a communication fault is detected at the keypad during operation.	Erd
CPU error	Stops the inverter and displays an error if a CPU error is detected due to noise, etc.	Er 3
Option communication error	Stops the inverter and displays an error if a communication error with the inverter unit is detected when using an option.	Ery
Option error	Stops the inverter and displays an error if an error is detected at the option side when using an option.	ErS
Operation error	wey priority Even when run commands are entered via the terminal block or communication, by pressing the keypad wey, the inverter forcibly decelerates and stops the motor, and an error is displayed after the motor has come to a stop. Start check	
Operation error	When the power is turned ON, an alarm is cleared, or when switching the run command method from link operation, the sudden starting of operation is suppressed if a run command has been entered, and an error is displayed to notify the operator. Brake status error Stops the inverter and displays an error if the brake signal (BRKS) output status and brake ON check signal (BRKE) input status do not match.	Er6
Tuning error	Stops the inverter and displays an error if tuning failure or interruption is detected during motor constant tuning, or if the tuning result is a defect.	Er 7
RS485 communication error (COM port 1)	Stops the inverter and displays an error if a communication error is detected when communicating via RS-485 COM port 1.	Er 8
RS485 communication error (COM port 2)	Stops the inverter and displays an error if a communication error is detected when communicating via RS-485 COM port 2.	ErP
Data saving error during undervoltage	Stops the inverter and displays an error if unable to successfully save data when undervoltage protection is triggered.	ErF
Position control error	Stops the inverter and displays an error if the positioning deviation is excessive when the servo lock is applied, or when performing master-follower operation.	Ero
Hardware error	Stops the inverter and displays an error if an inverter internal hardware fault is detected.	ErH
STO input (EN1, EN2) terminal circuit fault	Stops the inverter and displays an error if the inverter detects an EN1 or EN2 terminal circuit mismatch.	EEF
PG wire break	Stops the inverter and displays an error if a pulse encoder wire break is detected. (This function is valid on some PG interface option cards.)	РС
Excessive positioning deviation	Stops the inverter and displays an error if the position deviation is found to be excessive while performing position control.	d0
Overspeed protection	 Stops the inverter and displays an error if the following conditions are met. If d35 = 999, the speed detection value is the maximum output frequency x (d32 or d33) x 120% or higher If d35 ≠ 999, the speed detection value is the maximum output frequency x (d35) or higher The detected speed exceeds 599 Hz 	85
Magnetic pole position detection error	Stops the inverter and displays an error if the signal from the magnetic pole position sensor mounted on the PM motor is abnormal.	Erl
Step-out detection/ detection failure of magnetic pole position at start	This occurs when a PM motor step-out is detected, or if magnetic pole position at start failed to be detected.	Erd
Speed mismatch or excessive speed deviation	Stops the inverter and displays an error if an excessive deviation appears between the reference speed and detected/estimated speed.	ErE
Password protection	Stops the inverter and displays an error if a malicious person tries to unlock the password set by the customer.	LoP
Customizable logic error	Stops the inverter and displays an alarm when the alarm condition defined by the customer in the customizable logic is met. (It is not an alarm related to the inverter faults)	EEL
Simulation fault	A simulation fault can be produced if the keypad stop key and find key are held down for 5 seconds or longer. A simulation fault can be produced even if function code H45 is set to "1".	Err
Current input terminal signal wire break detection	Stops the inverter and displays an alarm if a current input wire break is detected when current is less than 2 mA when using the current input terminal (terminal [C1] or [C2]) as current input 4 to 20 mA.	[of
Customizable logic alarm	An error is displayed if the alarm conditions defined by the user with customizable logic are met. (This is not an error at the inverter itself.)	CR 1 CRS
EN (STO) terminal OFF	This is displayed if the run command turns ON when both terminal [EN1] and [EN2] are OFF, and the inverter is not ready to perform operation (STO status).	En
	Motor overload early warning	OL
	Motor overload early warning	0H
	Cooling fin overheat early warning	L iF
	Lifetime warning	r E F
Warning	Reference command loss detected	P 18
	PID warning output	uft
	Overheat warning by PTC thermistor in motor	PFE
	Machine life (Cumulative motor running hours)	rf E
	Inverter life (Number of startups)	Enf
	IGBT lifetime warning	រើង
Retry	The inverter can be automatically reset allowing it to be restarted when it stops due to a trip. (The number of retries and the latency between stop and reset can be specified.)	

*1 : The items in this table are displayed in the LED display on the LED keypad. Refer to the multi-function keypad. *2 : Some functions cannot be used with E3N.

Specification	Representative function
Keypad connection	Running operation and frequency settings by keypad, Timed operation, Remote/local switching, Display/change of function code setting value, isplay of various monitor items
Pulse train input PG interface card	Frequency setting by pulse train, Mototr control with speed sensor, Positioning control, Orientation function, Servo lock

Common Specifications

Item			Description				Remarks
Main circuit power cutoff detection		ot possible when the inverter AC n supplying power via a PWM co one".	input power supp			nain circuit power	
Forced operation (Fire mode)					Fod		
Installation location	Indoors						
Ambient temperature	HHD :-10 to +55 (current HND :-10 to +55 (current -10 to +50 (current (current FRN00 FRN00 FRN00 FRN00 HD / ND :-10 to +50 (current When installed closely HHD HD :-10 to +40 HND :-10 to +40 FRN00 FRN00 FRN00	derating necessary in +40 to +5	5 °C [122 to 131 ° 5 °C [122 to 131 ° 0 °C [104 to 122 ° RN0010E3 -7G, 0 °C [104 to 122 °	F] range) F] range) F] range) FRN0012E3 F] range)	⊐-7G		
	HD / ND : -10 to +30	°C [14 to 86 °F]					
Relative humidity	5 to 95% RH (there sh	ould no condensation)					
Atmosphere	vibration. (Pollution de The atmosphere must There should be no co 1000 m (3300 ft) or low	nust not be exposed to dust, direct sunlight, corrosive or flammable gases, oil mist, vapor, water drops or llution degree 2 (IEC60664-1)) ere must contain only a low level of salt. (0.01 mg/cm ² or less per year) be no condensation due to sudden temperature changes. bf) or lower cation with altitude of 1000 m (3300 ft) or higher, do so after reducing the output current as shown in the following					
	table.		3 . ,	9		J	
		Alti	ude		Output current de	erating factor	
		1000 m or lower (33	00 ft or lower)		1.00		
		1000 to 1500 m (33)			0.97		
		1500 to 2000 m (4,9			0.95		
		2000 to 2500 m (66			0.91		
		2500 to 3000 m (82)	00 to 9800 ft)		0.88		
Vibration		Туре	2 to less than 9 Hz	9 to less th 20 Hz	an 20 to less than 55 Hz	55 to 200 Hz	
	FRN0002E3	2G to FRN0115E3 -2G 4G to FRN0072E3 -4G 7G to FRN0012E3 -7G	3mm (max. amplitude)	9.8m/s ²		1m/s²	
Storage temperature		transport) (-13 to +158 °F)					
(Note 1)		temporary storage) (-13 to +149	°F)		Places not su		
	-10 to +30 °C (during	long-term storage) (14 to 86 °F)				or freezing due to	
Relative humidity (Note 2)	During temporary stor During long-term stor	age: 5 to 95% RH (there should age: 5 to 70% RH	no condensation)		Sudden temp	erature changes	
Atmosphere		be exposed to dust, direct sunlighere must contain only a low lev				er drops or	
Atmospheric pressure	vibration. The atmosphere must contain only a low level of salt. (0.01 mg/cm ² or less per year) 86 to 106 kPa (during storage) 70 to 106 kPa (during transport)						

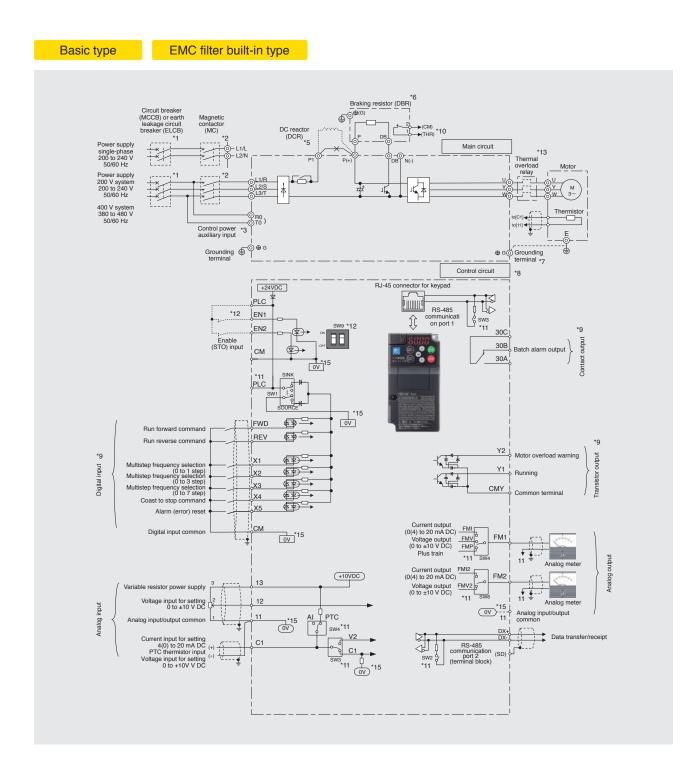
Terminal Specifications

Class	Symbol	Terminal name	Explanation	E3S	E3E	E3N	
	L1/R, L2/S, L3/T	Main power supply input terminals	Connect a three-phase power supply.	1		1	
Main circuit	R0, T0	Auxiliary control power input terminals	There is normally no need to use these terminals. If wishing to retain the integrated alarm signal issued if the protective function is triggered even when the inverter main power supply is cut off, or to constantly display the keypad, connect control power auxiliary input terminals to a power supply. If connecting a PWM converter, do not connect the power supply directly to the inverter control power auxiliary input terminals (R0, T0).	FRN011 FRN005	s: 88E3 - 20 5E3 - 20 59E3 - 20 72E3 - 40 72E3 - 40	G	
in ci	U, V, W	Inverter output terminals	Connect three-phase motor terminals U, V, and W to match the phase sequence.				
Mai	P1, P(+)	DC reactor connection terminals	Connect a DC reactor (DCR) (option) for power-factor improvement.				
	P(+), N(-)	DC link bus connection terminals	Connect braking unit terminals P(+) and N(-). Furthermore, DC link bus circuit of other inverters a be connected.	Ind PWM	converte	rs can	
	P(+), DB	Braking resistor connection terminals	Connect terminals P(+) and DB of the inverter to braking resistor terminals (option).				
	₿G	Inverter grounding terminal	This is a grounding terminal for the inverter chassis (case). Be sure to ground grounding terminal a noise countermeasure.	s to ensu	re safety,	and as	
	[13]	Power supply for potentiometer	Power supply for frequency setting (+10 VDC) (Potentiometer: 1 to 5 k Ω) Connect a potentiometer with rating of 1/2 W or higher.	0	0	0	
	[12]	Analog setting voltage input	 (1) Specify the frequency based on the external voltage input. - 0 to ±10 VDC/0 to ±100% (normal operation) - +10 to 0 VDC/0 to 100% (inverse operation) (2) In addition to frequency settings, PID commands, PID feedback signals, auxiliary frequency command settings, ratio settings, torque limiter level settings, and analog input monitors, etc. can be assigned to this terminal. (3) Hardware specifications Input impedance: 22 kΩ The maximum input is ±15 VDC, but is handled as ±10 VDC for voltages greater than ±10 VDC. 	0	0	0	
Analog input	[C1]	Analog setting current input (C1 function)	 (1) The frequency is specified based on the external current input. 4(0) to 20 mA DC/0 to 100% (normal operation) 20 to 4(0) mA DC/0 to 100% (inverse operation) (2) In addition to frequency settings, PID commands, PID feedback signals, auxiliary frequency command settings, ratio settings, torque limiter level settings, and analog input monitors, etc. can be assigned to this terminal. (3) Hardware specifications 	0	0	0	
		[C1]	Analog setting voltage input (V2 function)	 Specify the frequency based on the external voltage input. 0 to ±10 VDC/0 to ±100% (normal operation) +10 to 0 VDC/0 to 100% (inverse operation) (2) In addition to frequency settings, PID commands, PID feedback signals, auxiliary frequency command settings, ratio settings, torque limiter level settings, and analog input monitors, etc. can be assigned to this terminal. (3) Hardware specifications Input impedance: 22 kΩ The maximum input is +15 VDC, but is handled as +10 VDC for voltages greater than +10 VDC. (4) If using this function, set SW3 to the "V2" side, SW4 to the "Al" side. 	0	0	0
		PTC thermistor input	 PTC (Positive Temperature Coefficient) thermistors are connected for motor protection. If using this function, set SW3 to the "C1" side, SW4 to the "PTC" side. 	0	0	0	
	[11]	Analog common	This is a common terminal for analog input signals (terminals [13], [12], [C1], [FM1], and [FM2]). This terminal is isolated from terminals [CM] and [CMY].	0	0	0	
	[X1]	Digital input 1	(1) Various signals (coast to stop command, external alarms, multistep frequency selection, etc.)	~	0	0	
	[X2]	Digital input 2	can be set for terminals [X1] to [X5], [FWD], and [REV]. (2) The input mode and SINK/SOURCE can be switched using SW1.	0	0	0	
	[X3]	Digital input 3	(3) The operating mode between each digital input terminal and terminal [CM] can be switched		0	0	
	[X4]	Digital input 4 Digital input 5	to "ON when shorted (active ON)" or "OFF when shorted (active OFF)". (4) Digital input terminals [X5] can be set up as pulse train input terminals by changing the	0	0	0	
	[X5]	Forward rotation/stop command	function code.	0	0	0	
	[FWD]	Input	 When connected to complementary output pulse generator: max. 100 Hz When connected to open collector output pulse generator: max. 30 Hz (A pull-up resistor and pull-down resistor are required.) 	0	0	0	
Digital input	[REV]	Reverse rotation/stop command Input	(A pull-up resistor and pull-down resistor are required.) <digital circuit="" input="" specifications=""> <</digital>	0	0	0	

*1 These specifications and functions are useful during sensorless vector control. *2 These specifications and functions are useful during sensor-equipped vector control. However, an optional PG interface card is required.

Terminal Specifications

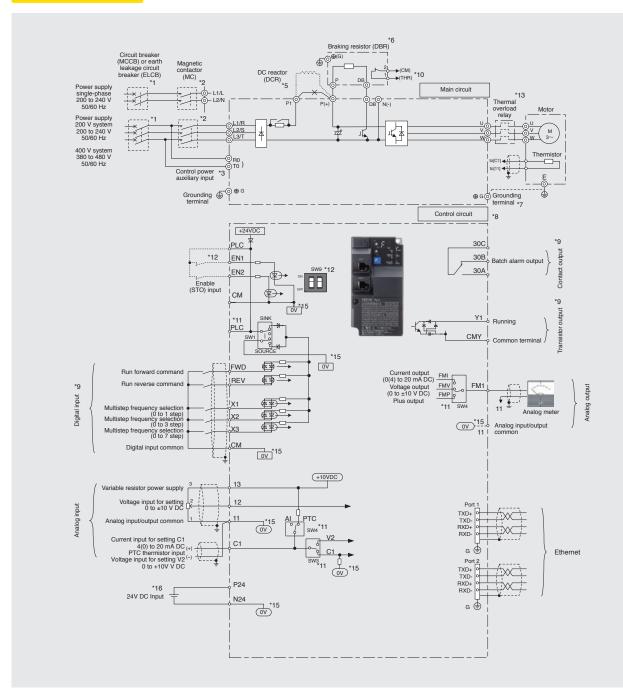
Class	Symbol	Terminal name	Explanation	E3S	E3E	E3N
Digital input	[EN1] [EN2]	Enable input 1 Enable input 2	 (1) By opening the circuit between terminals [EN1] and [PLC], or between terminals [EN2] and [PLC], inverter output transistor operation is stopped by the IEC/EN 61800-5-2-compliant STO safety stop function. (2) The input mode for terminals [EN1] and [EN2] is fixed at SOURCE mode. (3) If either [EN1] or [EN2] is OFF, and an alarm occurs. (4) SW9 enables and disables the STO function. If using the STO function, set SW9 to the "OFF" side. <[EN1][EN2] input circuit specifications> 	0	0	0
	[PLC]	Programmable controller signal power supply	 (1) Connect the output signal power supply for the programmable controller. (Rated voltage +24 VDC (power supply voltage fluctuation range: +20.4 to +27 VDC), maximum 100 mA DC) (2) The terminal can also be used as the power supply for loads connected to transistor outputs. 	0	0	0
	[CM]	Digital common	This is a common terminal for digital input signals. The terminal is insulated from terminals [11] and [CMY].	0	0	0
	[FM1]	Analog monitor 1 FMV function FMI function	Both terminals output analog DC voltage (0 to ±10 V) or analog DC current (4(0) to 20 mA) monitor signals. The output form (FMV/FMI) is switched using SW5 on the PCB and function code F29. Select the signal content from the following items according to the data setting of function code F31. Output frequency - Power consumption - Motor output Output current - PID feedback value - Analog output test Output voltage - Speed (PG feedback value) - PID command value Output torque - DC intermediate circuit voltage - PID output Load factor - Universal AO - Synchronous angular deviation 'Connectible impedance: Minimum 5 kΩ (at 0 to +10 VDC output) (Can connect up to two analog voltmeters (0 to 10 VDC, input impedance of 10 kΩ)) *Connectible impedance: Maximum 500 Ω (at 4 m to 20 mA DC output) * Cain adjustment range: 0 to 300%	0	0	0
Jput		Pulse monitor FMP function	Pulse output: 25 to 32000 p/s with full scale, duty of 50%	0	0	0
Digital input	[FM2]	Analog monitor 2 FMV function FMI function	Both terminals output analog DC voltage (0 to ±10 V) or analog DC current (4(0) to 20 mA) monitor signals. The output form (FMV2/FMI2) is switched using SW7 on the PCB and function code F32. Select the signal content from the following items according to the data setting of function code F35. Output frequency - Power consumption - Motor output Output current - PID feedback value - Analog output test Output voltage - Speed (PG feedback value) - PID command value Output torque - DC intermediate circuit voltage - PID output Load factor - Universal AO - Synchronous angular deviation 'Connectible impedance: Minimum 5 kΩ (at 0 to +10 VDC output) (Can connect up to two analog voltmeters (0 to 10 VDC, input impedance of 10 kΩ)) 'Connectible impedance: Maximum 50 Ω (at 4 m to 20 mA DC output) 'Cain adjustment range: 0 to 300%	0	0	0
	[11]	Analog common	This is a common terminal for analog input/output signals. This terminal is isolated from terminals [CM] and [CMY].	0	0	0
	[Y1]	Transistor output 1	 Inis terminal is isolated from terminals [CM] and [CMY]. (1) Various signals (running signals, frequency arrival signals, overload early warning signals, etc.) set with function codes E20 to E21 can be output. 	0	0	0
Transistor output	[Y2]	Transistor output 2	(2) The operating mode between transistor output terminals [Y1] and [Y2] and terminal [CMY] can be switched to "ON when signal output (active ON)" or "OFF when signal output (active OFF)". (Transistor output circuit specifications) Uperating ON level 2 V voltage OFF level 48 V Max. current when ON 50 mA Leakage current when OFF 0.1 mA	0	0	0
	[CMY]	Transistor output common	This is a common terminal for transistor output signals. This terminal is isolated from terminals [CM] and [11].	0	0	0


High performance Standard type Inverter

Class	Symbol	Terminal name	Explanation	E3S	E3E	E3N
Relay output	[30A] [30B] [30C]	Integrated alarm output	 When the inverter stops with an alarm, an integrated alarm is output at the relay contact (1C). Contact capacity: 250 VAC 0.3 A cos\$\$\phi\$\$ = 0.3, 48 VDC 0.5 A The same signals as those of terminals [Y1] to [Y2] can be selected and output. It is possible to switch between a "short circuit between terminals [30A] and [30C] when an ON signal is output (excitation: active ON)" or an "open circuit between terminals [30A] and [30C] when an ON signal is output (non-excitation: active OFF)". 	0	0	0
	[DX+] [DX-] [SD]	RS-485 COM port 2 (terminal block)	 This is an input/output terminal used to connect a personal computer or programmable controller, etc. by RS-485 communication. Protocols can be selected from the following. Modbus RTU, dedicated Fuji inverter protocols Start-stop synchronization, half-duplex method Max. communication distance: 500 mm Max. communication speed: 115.2 kbps 	0	0	_
Communication	RJ-45 connector Keypad	RS-485 COM port 1 (for keypad connection)	 (1) This is used as a connector for connecting the keypad. The keypad power is supplied from the inverter via an extension cable for remote operation. To connect the keypad remotely, the keypad relay adapter CBAD-CP is required separately. (2) This is used to connect a personal computer or programmable controller, etc. by RS-485 communication after disconnecting the keypad. Connector pinouts TXD Image: Connector pinouts Image: Connec	0	0	
	Ethernet RJ-45 connector	Ethernet Port 1 Port 2	This is a connector that connects a programmable controller, etc. via Ethernet communication.	_	_	0
	USB connector	USB port	This is a USB connector (miniB specification) for connecting to a personal computer. Function codes can be edited, transferred, or verified, an inverter test run can be carried out, and all states can be monitored using the engineering PC tool "FRENIC Loader 4". It is possible to edit, transfer, and verify the function code of "FRENIC Loader" with USB bus power.	0	0	0
Power supply	[P24]	DC24V input	By connecting a power supply to this terminal, Ethernet communication is possible even when the main power supply of the inverter is cut off. The inverter can be operated without inputting power to this terminal. Input voltage range : +22 to +26V DC Current consumption : max.200 mA	_	_	0
۵.	[N24]	DC24V common	Common terminal for DC24V	—	_	0
Grounding terminal	(_	Grounding terminal for Ethernet	This is the terminal that connects the shield part of the Ethernet communication cable to FG, and is connected to the G terminal of the inverter.Keep the cable length as short as possible.	_	_	0

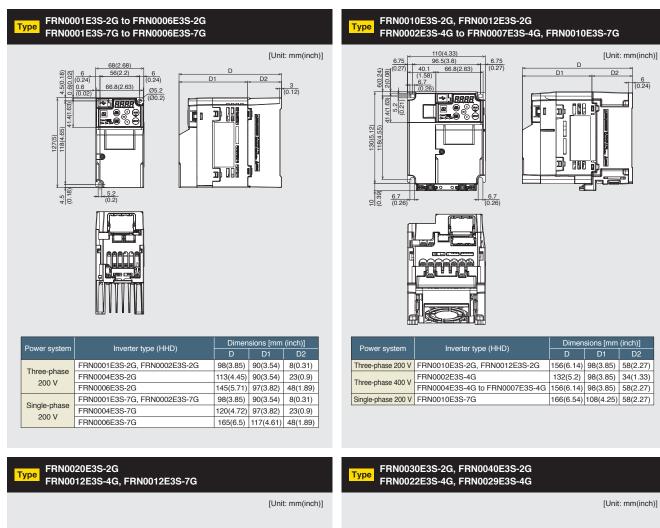
Refer to the FRENIC-Ace (E3) User's Manual for details.

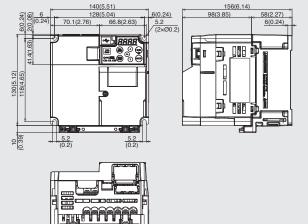
Options

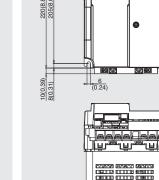

Basic Wiring Diagram Wiring of main circuit terminal and grounding terminal

- *1 Install the molded case circuit breaker (MCCB) or earth leakage circuit breaker (ELCB) (with overcurrent protection function) recommended for each inverter on the inverter input side (primary side) to protect wiring. Do not use a circuit breaker that exceeds the recommended rated current.
- *2 An MCCB or ELCB is also used if isolating the inverter from the power supply, and therefore the magnetic contactor (MC) recommended for each inverter should be installed if required. Please note that if installing a coil such
- An MCCB or ELCB is also used it isolating the inverter from the power supply, and therefore the magnetic contactor (MC) recommended for each inverter should be installed if required. Please note that if installing a coil such as an MC or solenoid near the inverter, connect a surge absorber in parallel. If wishing to retain the integrated alarm signal issued if the protective function is triggered even when the inverter main power supply is cut off, or to constantly display the keypad, connect these terminals to the power supply (on FRN008853). 2G or higher / FRN008853). 2G or higher / FRN008853). 2G or higher / FRN005853). The inverter can be run even without inputting the power supply to these terminals. Remove the shorting bar between the inverter main circuit terminals PI and P(4) before connecting the DC reactor (DCR) (option). Use a DC reactor (DCR) when the capacity of the power supply transformer is 500 kVA or more and is 10 times or more the inverter rated capacity, or when there are "thyristor-driven" loads. *3 *5
- *6 *7
- Invertes are equipped with a built-ho tracking transistor, allowing direct connection of braking resistors between P(+) and DB. This terminal is used for grounding the motor. Connect if required. Use twisted wire or shielded wire for control signal lines. Shielded wires are generally grounded, however, if subject to significant induction noise from outside, it may be possible to suppress the effect of the noise by connecting wires to [CM]. Isolate control signal lines from the main circuit wiring as best as possible, and do not run inside the same duct (a distance of 10 cm or greater is recommended.) If lines intersect, ensure that they do so almost perpendicularly to the main circuit wiring. Each of the functions described for terminals [FWD] and [REV], terminals [X1] to [X5] (digital input), terminals [Y1] to [Y2] (transistor output), and terminal [30A/B/C] (contact output) indicate functions assigned by factory default *8
- *9 default. **'**11 These are the switches on control PCBs, and are used to specify settings for inverter operation. Refer to the User's Manual for details
- *12 Safety function terminals [EN1] and [EN2] are disabled with SW9 (2-pole switch) on the control PCB by factory default. If using this terminal function, be sure to change the respective SW9 switches to the OFF position and conne
- connect. *13 The thermal overload relay is applicable as necessary. Make the circuit breakers (MCCB) or the magnetic contactors (MC) trip by the thermal relay auxiliary contacts (manual recovery). *15 _____ and ____ are separated and insulated. *17 The CBAD-CP keypad relay adapter is required to connect a remote control cable.

High performance Standard type Inverter **FRENI** C-Ace

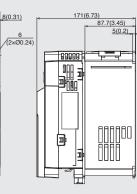

Ethernet built-in type




- *1 Install the molded case circuit breaker (MCCB) or earth leakage circuit breaker (ELCB) (with overcurrent protection function) recommended for each inverter on the inverter input side (primary side) to protect wiring. Do not use a circuit breaker that exceeds the recommended rated current.
- *2 An MCCB or ELCB is also used if isolating the inverter from the power supply, and therefore the magnetic contactor (MC) recommended for each inverter should be installed if required. Please note that if installing a coil such
- An MCCB or ELCB is also used it isolating the inverter from the power supply, and therefore the magnetic contactor (MC) recommended for each inverter should be installed if required. Please note that if installing a coil such as an MC or solenoid near the inverter, connect a surge absorber in parallel. If wishing to retain the integrated alarm signal issued if the protective function is triggered even when the inverter main power supply is cut off, or to constantly display the keypad, connect these terminals to the power supply (on FRN008BES]_2G or higher / FRN005BES]_4G or higher / The inverter can be run even without inputting the power supply to these terminals. Remove the shorting bar between the inverter main circuit terminals P1 and P(4) before connecting the DC reactor (DCR) (option). Use a DC reactor (DCR) when the capacity of the power supply transformer is 500 kVA or more and is 10 times or more the inverter rated capacity, or when there are "thyristor-driven" loads. *3 *5

- more and is 10 times or more the inverter rated capacity, or when there are "thyristor-driven" loads.
 for the inverters are equipped with a built-in bracking transition, allowing direct connection of braking resistors between P(+) and DB.
 This terminal is used for grounding the motor. Connect if required.
 Use twisted wire or shielded wire for control signal lines. Shielded wires are generally grounded, however, if subject to significant induction noise from outside, it may be possible to suppress the effect of the noise by connecting wires to [CMI]. Isolate control signal lines from the main circuit wiring as best as possible, and do not run inside the same duct (a distance of 10 cm or greater is recommended.) If lines intersect, ensure that they do so almost perpendicularly to the main circuit wiring.
 Each of the functions described for terminals [FWD] and [REV], terminals [X1] to [X3] (digital input), terminal [Y1] (transistor output), and terminal [30A/B/C] (contact output) indicate functions assigned by factory default.
 the same the switches on control PCBs, and are used to specify settings for inverter operation. Refer to the User's Manual for details.
 tastery function terminals [EN1] and [EN2] are disabled with SW9 (2-pole switch) on the control PCB by factory default. If using this terminal function, be sure to change the respective SW9 switches to the OFF position and connect.
- connect.
- *13 The thermal overload relay is applicable as necessary. Make the circuit breakers (MCCB) or the magnetic contactors (MC) trip by the thermal relay auxiliary contacts (manual recovery).
 *15 ov and ov are separated and insulated.
 *16 By connecting a power supply to this terminal, Ethernet communication is possible even when the main power supply of the inverter is cut off. The inverter can be operated without inputting power to this terminal.

Basic type

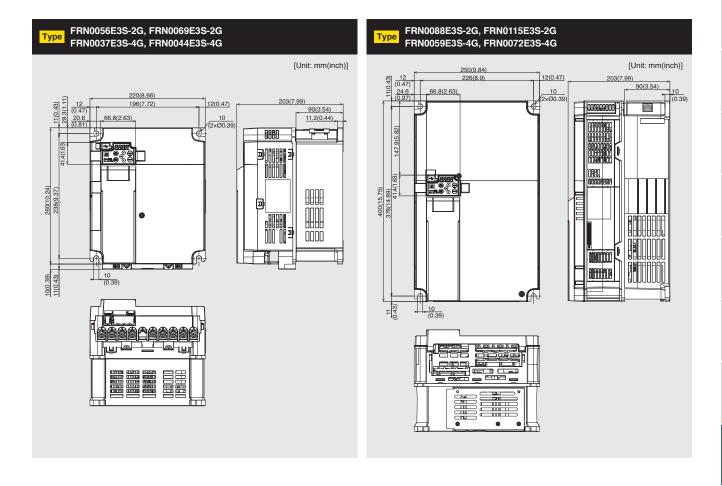


8(0.31)

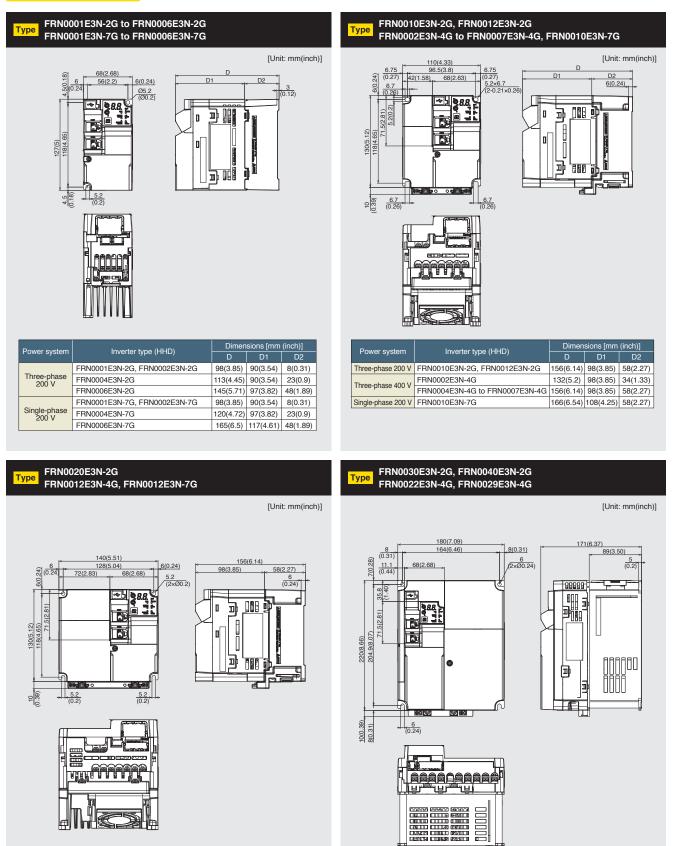
<u>11.7</u> (0.46)

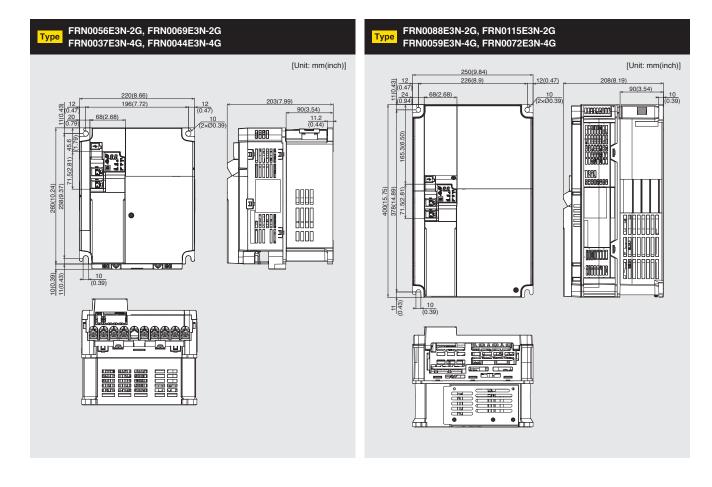
11 4/1

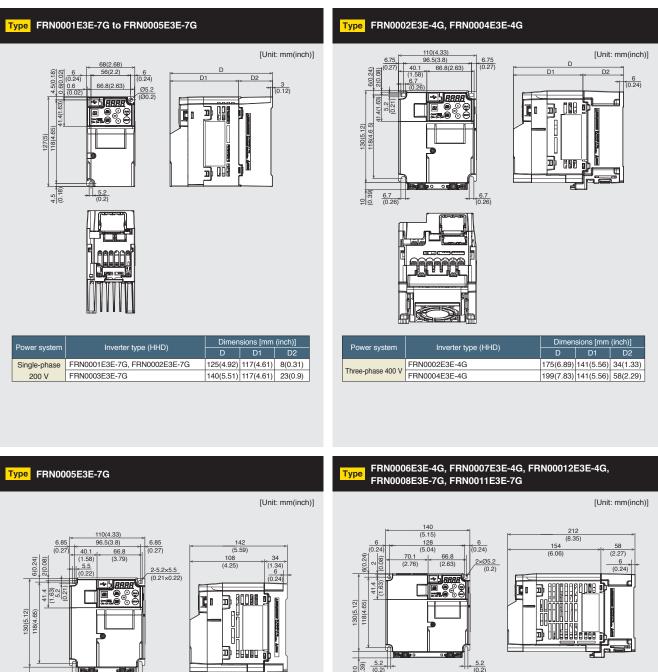
86)

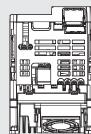

180(7.09) 164(6.46)

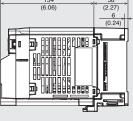
66.8(2.63)

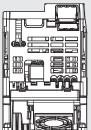

1988A

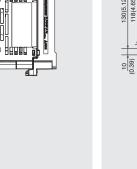


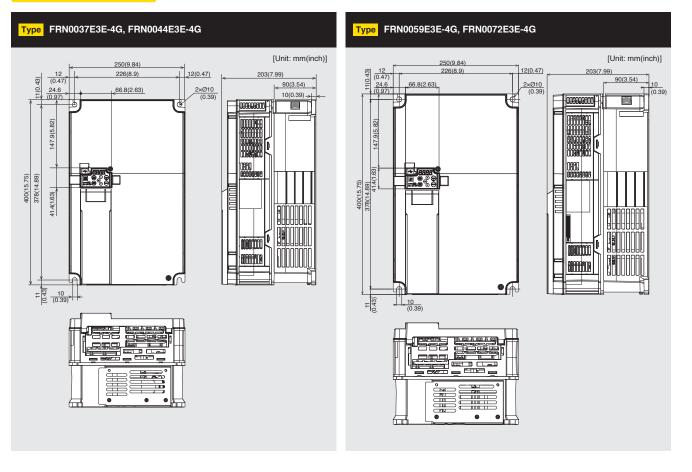

Ethernet built-in type





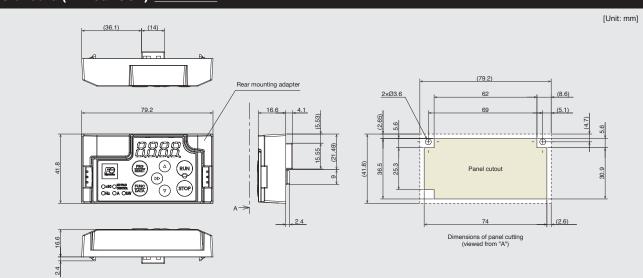



EMC Filter built-in type

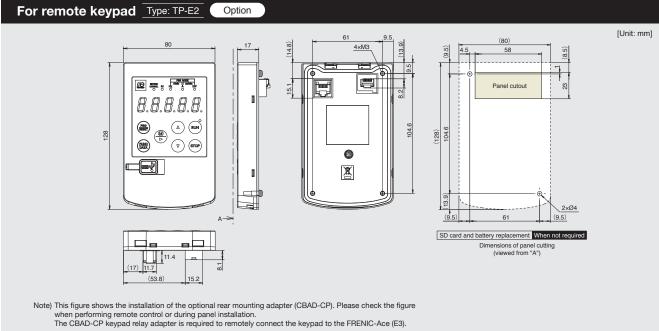

10 (0.39)

5.5

> 5.5 (0.22)



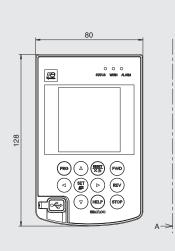
EMC Filter built-in type

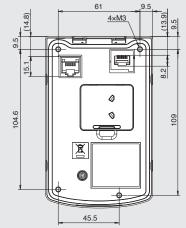


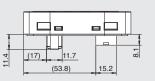
Keypad

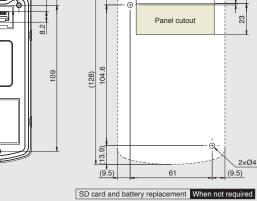
Note) The figure shows the optional rear mounting adapter(CBAD-CP). Please check when remotely operating or installing the panel. TP-M3 is a standard accessory. Please note that this accessory cannot be purchased as an optional item.

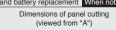
Multi-function keypad (with USB) Type: TP-A2SW Option

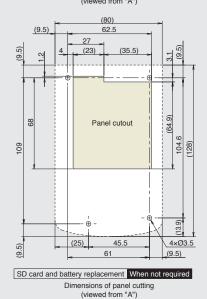

17


ſ


Π


E


]



(80)

58

4.5 (9.5)

Note) This figure shows the installation of the optional rear mounting adapter (CBAD-CP). Please check the figure when performing remote control or during panel installation. The CBAD-CP keypad relay adapter is required to remotely connect the keypad to the FRENIC-Ace (E3).

[Unit: mm]

(8.5)

33

2ר4

(9.5)

Keypad Functions

Use the keypad to start and stop the inverter, display various data, set function code data, check I/O, and display maintenance and alarm information.

Overview of operation and functionality

Item	Display and keys	Overview of functionality					
Data display	8.8.8.8.	This is a 4-digit, 7-segment LED monitor. It displays the following information for each operation mode. Operation mode : Operation information (output frequency, output current, output voltage, etc.) Switches to minor failure display when a minor failure occurs. Program mode : Menu, function code, function code data, etc. Alarm mode : Alarm code indicating the cause of the protection function's activation.					
	RCORESE	Switches the operation mode. Operation mode : Pressing this key will switch it to program mode. Program mode : Pressing this key will switch it to operation mode. Alarm mode : After clearing the alarm cause, pressing this key will switch it to the operation mode deactivated by the alarm.					
	EUNO DATA	Performs the following operations: Operation mode : Switches the operation state monitoring items (output frequency, output current, output voltage, etc.). Program mode : Displays function code or establishes the data. Alarm mode : Switches the display of the alarm detailed information.					
	RUN	Starts the motor operation. (When the keypad is being operated)					
Key operation	STOP	Stops the motor operation. (When the keypad is being operated)					
	A/V	Used to select the setting items displayed on the LED monitor or change the function code data.					
	*	 Operation mode The functionality assigned by function code E70 is available. Press and hold for one second to turn the functionality ON or OFF. It is OFF by default when the power is turned on. Program mode During menu display Proceeds to the next menu number. During function code display Advances the display number in steps of 10. During numerical setting Moves the cursor digit to the right. Alarm mode Advances the alarm detailed information number in steps of 10. 					
	RUN (Green)	Lights up when the " 🚃 " key is pressed or when operated by issuing the "FWD" or "REV" signal or communication commands.					
LED	KEYPAD CONTROL (Green)	Lights up when the on the keypad is enabled as an operation command. However, in program mode or alarm mode, no operation is possible even if this LED is lit. It blinks every second in local mode.					
display	Unit LEDs (three red LEDs)	Hz, A, kW, r/min, m/min: Displays the unit when monitoring the operating status in operation mode via a combination of three LEDs. PRG.MODE: Two LEDs on the left and right will light up when you transition to program mode. (•Hz •A •kW)					
	x10 LED (Red)	If the data to be displayed exceeds 9999, the x10 LED will light up and the actual data will be represented by the "Displayed data x10". E.g.: When the data is 12,345, the LED monitor will display " $\frac{1}{12}\frac{3}{3}$ " and the x10 LED will light up at the same time, meaning 1,234 x10 = 12,340.					

High performance Standard type Inverter

Keypad Operation

>>> LED monitor

In Running mode, the LED monitor displays running status information (output frequency, current or voltage); in Programming mode, it displays menus, function codes and their data; and in Alarm mode, it displays an alarm code which identifies the alarm factor that has activated the protective function.

If one of LED4 through LED1 is blinking, it means that the cursor is at this digit, allowing you to change it.

In addition, the dot indicating the decimal point in LED1 will blink to indicate that the currently displayed value is the PID command value, thereby distinguishing it from the frequency display.

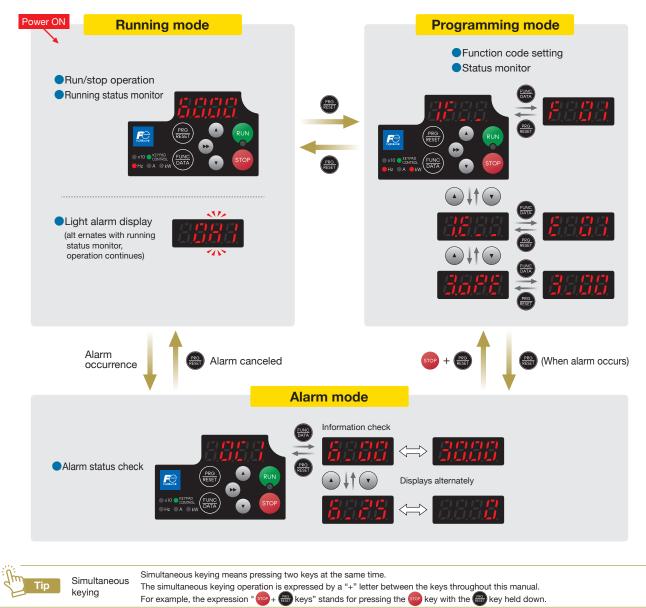
LED4	LED3	LED2	LED1
(-)	(-)	Ĩ	(-)
Ī.	Ĵ.	Ī.	Í.
		-11-	

7-segment LED monitor (LED2 is blinking)

7-segment LED monitor display

Character	7-segment	Character	7-segment	Character	7-segment	Character	7-segment
0	ß	9	9	*	/ or /	R	r
1	1	A	R	J	J	S	5
2	2	В	Ь	К	μ	Τ*	f or <u></u>
3	3	C*	[or <u></u>	L	L	U*	🖞 or 📊
4	4	D	d	М	[]	V *	🖞 or 📊
5	5	E	Е	N	n	W	8
6	6	F	F	O*	🚺 or 👩	Х	ŀ
7	7	G*	[j or]	Р	P	Y	9
8	8	H*	H or H	Q	9	Z	Ľ
Special characters and symbols (numbers with decimal point, minus and underscore)							
-	-	_	_	[E]]
%	🗧 or 📙						

*: Upper case and lower case characters are used based on the displayed content.

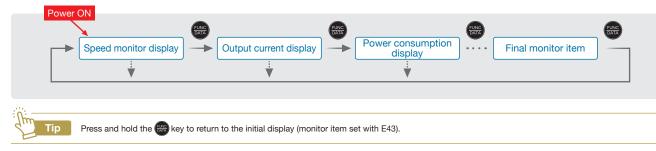

Keypad Operation

>> Overview of Operation Modes

FRENIC-Ace is equipped with the following three operation modes.

Operation mode	Description
Running Mode	 When powered ON, the inverter automatically enters this mode. This mode allows you to specify the reference frequency, PID command value and etc., and run/stop the motor with the (a) / (b) keys. The running status can also be monitored in real time. Changes to the status display when not in the normal running status. Changes to the light alarm display when a light alarm occurs.
Programming Mode	This mode allows you to configure function code data and check a variety of information relating to the inverter status and maintenance.
Alarm Mode	If an alarm condition arises, the inverter automatically enters Alarm mode in which you can view the corresponding alarm code* and its related information on the LED monitor. * Alarm code: Indicates the cause of the alarm condition.

Status transition between operation modes



Running Mode

Operating State Monitor

In running mode, the items in Table 3.3-1 below can be monitored. The monitor items set with function code E43 are displayed immediately after turning the power on. Press the two switch between monitor items.

Monitor items

Monitor items						
Monitor item	example	LED indication	Unit	Meaning of displayed value	Data for E43	
Speed monitor	Function co	de E48 specifies wh	at to be dis	played on the LED monitor and LED indicators.	0	
Output frequency 1 (before slip compensation)	50.00	●Hz ●A ●kW	Hz	Frequency actually being output	(E48=0)	
Output frequency 2 (after slip compensation)	50.00	●Hz ●A ●kW	Hz	Frequency actually being output	(E48=1)	
Frequency specified by frequency command whenalarm occurred	50.00	●Hz ●A ●kW	Hz	Indicated value = Reference frequency (Hz)	(E48=2)	
Motor speed	1500	●Hz ●A ●kW	min-1	Indicated value =Output frequency (Hz) $\times \frac{120}{P01}$	(E48=3)	
Load shaft speed	300.0	●Hz ●A ●kW	min ⁻¹	Indicated value = Output frequency (Hz) × E50	(E48=4)	
Line speed	300.0	●Hz ●A ●kW	m/min	Indicated value = Output frequency (Hz) × E50	(E48=5)	
Constant feeding rate time	50	●Hz ●A ●kW	min	Indicated value = E50 Output frequency (Hz) × E39	(E48=6)	
Speed (%)	50.0	●Hz ●A ●kW	%	Indicated value = <u> Output frequency (Hz)</u> × 100 Max. frequency	(E48=7)	
Output current when alarm occurred.	12.39	●Hz ●A ●kW	A	Current output from the inverter in RMS	3	
Power consumption	10.25	●Hz ●A ●kW	kW	Input power to the inverter	9	
Calculated torque *1	50	●Hz ●A ●kW	%	Motor output torque in % (Calculated value)	8	
Output voltage *2	2000	●Hz ●A ●kW	V	Output voltage (RMS) of the inverter	4	
Motor output *3	<i>9.85</i>	●Hz ●A ●kW	kW	Motor output (kW)	16	
Load factor *4	Süc	●Hz ●A ●kW	%	Load factor of the motor in % as the rated output being at 100%	15	
PID output *5, *6	10.00.	●Hz ●A ●kW	-	PID command/feedback amount converted to a physical quantity of the object to be controlled (e.g. temperature)	10	
PID feedback value*5,*7	9.00.	●Hz ●A ●kW	-	Refer to function codes J106 and J107 for details.	12	
PID deviation*5, *7	<i>1.00</i> .	●Hz ●A ●kW	-	PID command value and PID feedback value deviation converted into physical quantities of the object to be controlled	29	
PID output *5, *6	100.0.	●Hz ●A ●kW	%	PID output in % as the maximum frequency (F03) being at 100%	14	
Timer *10	50	●Hz ●A ●kW	s	Remaining time for timer operation	13	
Analog input monitor *8	82.00	●Hz ●A ●kW	-	An analog input to the inverter in a format suitable for a desired scale. Refer to the following function codes. Terminal [12]: C59, C60 Terminal [C1] (C1 function): C65, C66 Terminal [C1] (V2 function): C71, C72	17	
Command position*11	765 432 I.	●Hz ●A ●kW	-	Alternate display of 4 higher order digits (with sign) and 4 lower order digits	21	
Positioning deviation*11	765 432 I.	●Hz ●A ●kW	-	Alternate display of 4 higher order digits (with sign) and 4 lower order digits	22	

** Calculated torque 100% is equal to the motor rated torque. For the calculation formula of the motor rated torque, refer to E.2 "Calculated formula" (1) in Appendix E "Conversion from SI Units." *2 If displaying the output voltage, is displayed as the last digit on the LED monitor to denote the unit for V (volts). *3 When the LED monitor displays the motor output, the unit LED indicator "kW" blinks. *4 When the LED monitor displays a PID command or its output amount, the dot (decimal point) attached to the lowest digit of the 7-segment letter blinks. *7 When the LED monitor displays a PID feedback amount, the dot (decimal point) attached to the lowest digit of the 7-segment letter blinks. *8 The nate of the rate of

Keypad Operation

Monitor items

Monitor items					•:ON •:OFF
Monitor item	example	LED indication	Unit	Meaning of displayed value	Data for E43
Stop target position*11	765 432 I.	●Hz ●A ●kW	-	Alternate display of 4 higher order digits (with sign) and 4 lower order digits (with sign) for stop target position with user value	28
Torque current *9	48	●Hz ●A ●kW	%	Torque current command value or calculated torque current	23
Magnetic flux command *9	50	●Hz ●A ●kW	%	Magnetic flux command value	24
Input watt-hour	100.0	●Hz ●A ●kW	kWh	Indicated value = <u> Input watt-hour (kWh)</u> 100	25
Torque bias	25	●Hz ●A ●kW	%	Torque bias value display	30
Estimated inertia acceleration/ deceleration time conversion value	1.234	Hz A kW	s	Display of estimated inertia result in logic acceleration/deceleration time	31
Customizable logic output*12	82.00	●Hz ●A ●kW	-	Display of output content for specific customizable logic step	32

*9 Displays 0 (zero) under V/f control.
*11 Displays when the position control function is enabled.
*12 Displays only if U00 = 1 and U98 0.

The monitoring signals for the monitor items such as keypad output frequency and output current can be filtered with function code E42 (LED display filter). If the display varies unstably so as to be hard to read due to load fluctuation or other causes, increase this filter time constant. (Function code E42)

Programming Mode

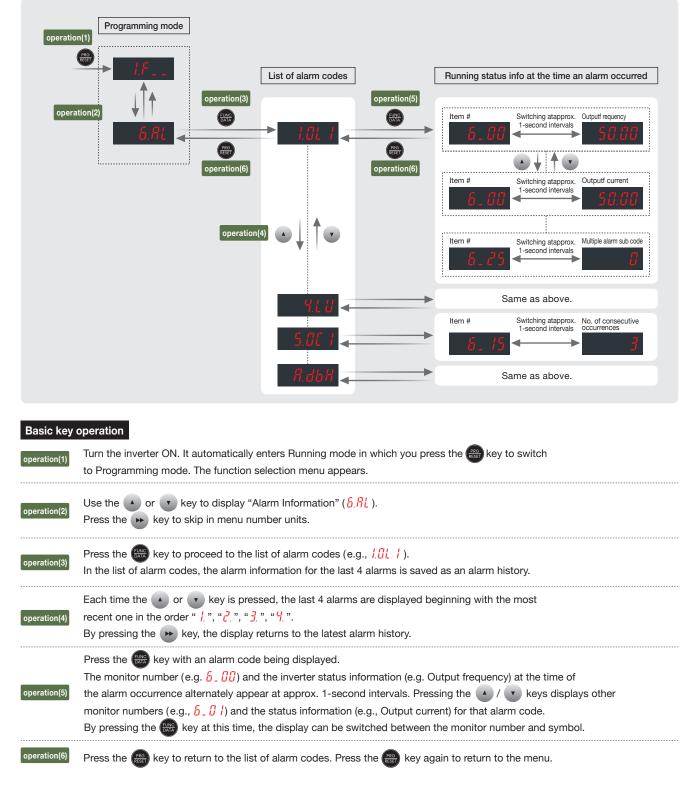
The Programming mode provides you with the following functions--setting and checking function code data, monitoring maintenance information and checking input/output (I/O) signal status. The functions can be easily selected with the menu-driven system. Table 3.4-1 below lists menus available in Programming mode. The leftmost digit (numerals) of each letter string on the LED monitor indicates the corresponding menu number and the remaining digits indicate the menu contents.

When the inverter enters Programming mode from the second time on, the menu selected last in Programming mode will be displayed.

Menus available in programming mode

Menu #	Menu	LED monitor indication	Main function			
		1.F	F codes (Basic functions)			
		1.8	E codes (Extension terminal functions)			
1	"Data Setting"	1.6	C codes (Control functions)	Function codes can be displayed and changed.		
		~ (Omitted) \sim			
		1.2	k codes (optional functions)			
2	"Data Checking"	2.589	Displays only function codes that have been changed from their factory defaults. The function code data can be referenced and changed.			
3	Run monitor	3.086	Displays the running information required for maintenance or test runs.			
4	I/O check	4 0	Displays external interface information	ation.		
5	"Maintenance Information"	5. <i>C HE</i>	Displays maintenance information	including cumulative run time.		
6	Alarm Information	6.AL	Alarm codes for the past four alarm	s can be displayed, and operating information at the time each alarm occurred can be referenced.		
8	Destination setting	8.dESE	Sets the region (overseas) in which	h the product is used. This is not used for machines for use in Japan.		
9	Communication monitor	9.5 9.8ddr 9.d8t8	Codes communicated back and forth between the host device can be monitored, and communication commands can be entered. Refer to the "RS-485 Communication User's Manual" for details.			
0	Favorites	0.FnC	Only function codes selected by u	sers can be referenced or changed.		

Enter Programming mode at the keypad to display the menu. Change the menu with the 💌 and 💌 keys, and select the desired menu item with the 📟 key. Once the entire menu has been cycled through, the display returns to the first menu item. Press the proceed to the next menu number.



Programming Mode

Reading alarm information Alarm Information

Menu number 6 "Alarm Information: 5.81" shows which protective function performed for the past 10 alarms with an alarm code. Further, it also displays alarm information that indicates the status of the inverter when the alarm occurred.

"Alarm Information" menu transition

Keypad Operation

"Alarm Information" display content

Monitor No.	Displayed content	Description
6.00	Output frequency	Output frequency before slip compensation when alarm occurred
6.01	Output current	Output current when alarm occurred. Unit: A (amperes)
6.02	Output voltage	Output voltage when alarm occurred Unit: V (volts)
6.03	Calculated motor output torque	Calculated motor output torque when alarm occurred
6.04	Frequency specified by frequency command	Frequency specified by frequency command when alarm occurred
6.05	Rotation direction	Displays the current rotation direction when alarm occurred. <i>F</i> : forward, :r reverse,: stop
6.06	Running status	Running status in 4-digit hexadecimal format
6.07	Cumulative run time	Displays the cumulative main power supply up time of the inverter. Measurement range: 0 to 65,535 hours Display: The cumulative operating hours is displayed alternately in the upper two digits and the lower three digits. Examples: 0 ⇔ 5 35 h (535 hours) 5 ⇔ 5 35 h (65,535 hours) When the last three digits are displayed, h (hours) will be displayed at the end. If it exceeds 65,535 hours, it will return to 0 and reaccumulate.
6.08	Number of startups	It accumulates and displays the number of times the motor has been operated (the number of times the inverter's operation command was turned on). Measurement range: 0 to 65,535 times Display: $\frac{1}{0}$ to $\frac{9999}{100}$ When the number of times exceeds 1,000, the x10 LED will light up and display the value ", number of times \div 10". If it exceeds 65,535 times, it will return to 0 and reaccumulate.
6.09	DC link bus voltage	Displays the DC link bus voltage of the inverter main circuit. Unit: V (volts)
6. 10	Temperature inside the inverter	Displays the temperature of the inverter heat sink when alarm occurred. Unit: °C
6.11	Max. temperature of heat sink	Displays the temperature of the inverter heat sink when alarm occurred. Unit: $^\circ \text{C}$
6. 12	Terminal I/O signal status (displayed with ON/OFF of LED segments)	
6. 13	Terminal input signal status (in hexadecimal)	Displays I/O signal status.
6. 14	Terminal output signal status (in hexadecimal)	
6. 15	No. of consecutive occurrences	Shows how many times the same alarm has occurred consecutively.
6. 16	Multiple alarm 1	Simultaneously occurring alarm code (1) (" " is displayed if no alarm has occurred.)
6. 17	Multiple alarm 2	Simultaneously occurring alarm code (2) (" " is displayed if no alarm has occurred.)
6. 18	Terminal I/O signal status under communications control (displayed with the ON/OFF of LED segments)	
6. 19	Terminal input signal status under communications control (in hexadecimal)	Displays the ON/OFF state of digital I/O terminals transmitted via RS-485 communications.
6.20	Terminal output signal status under communications control (in hexadecimal)	
6.21	Error sub code	Secondary error code for an alarm.
6.22	Running status 2	Displays running status 2 in 4-digit hexadecimal format.
6.23	Detected value	Displays the detected speed value when alarm occurred.
6.24	Running status 3	Displays running status 3 in 4-digit hexadecimal format.
6.25	Multiple alarm sub code	Secondary error code for a multiple alarm
0100		

Alarm Mode

If an abnormal condition arises, the protective function is invoked and issues an alarm, then the inverter automatically enters Alarm mode. At the same time, an alarm code appears on the LED monitor.

Releasing the alarm and switching to Running mode

Remove the cause of the alarm and press the end key to release the alarm and return to Running mode. The alarm can be removed using the end key only when the alarm code is displayed.

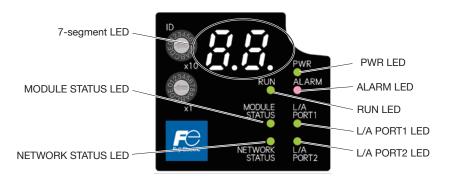
Displaying the status of inverter at the time of alarm

When the alarm code is displayed, you may check various running status information when the alarm occurred (output frequency and output current, etc.) by pressing the end way. The monitor item number and data for each running status information will be displayed alternately.

Further, you can view various information items on the running status of the inverter using the key. The information displayed is the same as for menu number 6 "Alarm Information" in Programming mode. Pressing the key while the running status information is displayed returns to the alarm code display.

When the running status information is displayed after removal of the alarm cause, pressing the mathematic key twice returns to the alarm state. This means that the motor stats running if a run command has been received by this time.

Displaying the alarm history


It is possible to display the most recent 3 alarm codes in addition to the one currently displayed. Previous alarm codes can be displayed by pressing the () () key while the current alarm code is displayed.

Switching to Programming mode

You can also switch to Programming mode by pressing "soo + keys" simultaneously with the alarm displayed, and modify the function code data.

Explanations of each display section

The monitor display section on the front of the E3N (Ethernet built in type) displays the inverter and communication status.

Names of each keypad part and overview of functions

Item	LED Monitor and Keys	Functions		
7-segment LED indicators		This is a 2-digit, 7-segment LED monitor. It displays the inverter status.		
	PWR (green)	Lights up when the inverter unit is energized.		
	ALARM (red)	Lights up when an alarm has occurred and flashes when a warning has occurred.		
LED display section	RUN (green)	Lights up when the inverter is running.		
	MODULE STATUS (green/red)			
	NETWORK STATUS (green/red)	The LED that lights up differs depending on theprotocol. Refer to the explanations on the status LED for each protocol.		
	L/A PORT1 LED			
	L/A PORT2 LED			

Keypad Operation

LED status Ethernet/IP

LED Name	Color	LED Status	Description	Remarks
	Green/Red	OFF	Power OFF	
		Alternate blinking	During self-diagnosis test at startup Each LED turns on for 0.25 seconds for indicator tests at startup MS (Green) ON→MS (Red) →NS (Green) →NS (Red) → OFF	Test performed for 1 second
MS (MODULE	0	ON	Operating normally	
STATUS)	Green	Blinking	IP address is not set when using DHCP.	
		OFF	No failure	
	Red	Blinking	Minor failure (recoverable)	Incorrect communication settings, etc.
		ON	Mounting failure or hardware failure (unrecoverable) *1	Er 4 occurs in the inverter
	Green/Red	Alternate blinking	During self-diagnosis test at startup	Test performed for 1 second
	Green	OFF	Connection with scanner not established (IP address is not set)	
		Blinking	Waiting for connection establishment with scanner (IP address is set)	Waiting for a communication connection request from the scanner.
NS (NETWORK		ON	Normally communicating with the scanner	
STATUS)		OFF	Normally communicating with the scanner	
	Red	Blinking	A timeout occurred during communication with the scanner. - The communication cycle time is short.	*2
		ON	There is a problem with the Ethernet cable or the settings. - Duplicate IP address	*2
		OFF	Not connected	
L/A PORT 1 L/A PORT 2	Green	Blinking	Linking (in communication)	
		ON	Linking (not in communication)	

*1: Hardware failure status indicates an error that cannot continue operation such as a hard watchdog timeout, memory error, or exception interrupt.

*2: Er S may occur in the inverter. However, it is not displayed before starting IO communication. Er S may not be displayed according to the setting of o27.

LED status (PROFINET)

LED Name	Color	LED Status	Description	Remarks
	Green/Red	OFF	Power OFF	
MS		Alternate blinking	During self-diagnosis test at startup Each LED turns on for 0.25 seconds for indicator tests at startup MS (Green) ON→MS (Red) →NS (Green) →NS (Red) → OFF	Test performed for 1 second
(MODULE STATUS)	Green	ON	Operating normally	
014100/		OFF	Operating normally	
	Red	Blinking	MAC address error	
		ON	Mounting failure or hardware failure (unrecoverable) *1	Er 4 occurs in the inverter
	Green/Red	Alternate blinking	During self-diagnosis test at startup	Test performed for 1 second
	Green	OFF	Connection with master not established.	
NS		Blinking	Identifying the device. (The LED test with diagnostic tool)	Waiting for a communication connection request from the master
(NETWORK		Single flash	Waiting for connection establishment with master.	
STATUS)		ON	Normally communicating with the master.	
		OFF	Normally communicating with the master.	
	Red	Single flash	Device Name is not registered.	*3
		Double flash	IP address is not registered.	
		OFF	Not connected	
L/A PORT 1 L/A PORT 2	Green	Blinking	Linking (in communication)	
		ON	Linking (not in communication)	

*1: Hardware failure status indicates an error that cannot continue operation such as a hard watchdog timeout, memory error, or exception interrupt.

*3: It occurs when communication is disconnected after the start of communication or the Device Name is deleted during communication.

It does not occur before communication, or if there is no Device Name.

LED status (Modbus TCP)

LED Name	Color	LED Status	Description	Remarks
		OFF	Power OFF	
	Green/Red	Alternate blinking	During self-diagnosis test at startup Each LED turns on for 0.25 seconds for indicator tests at startup MS (Green) $ON \rightarrow MS$ (Red) $\rightarrow NS$ (Green) $\rightarrow NS$ (Red) $\rightarrow OFF$	Test performed for 1 second
MS		ON	Operating normally	
(MODULE STATUS)	Green	Blinking	IP address is not set when using DHCP.	
	Red	OFF	No failure	
		Blinking	Minor failure (recoverable)	Incorrect communication settings, etc.
		ON	Mounting failure or hardware failure (unrecoverable) *1	Er 4 occurs in the inverter
NS	Green/Red	Alternate blinking	During self-diagnosis test at startup	Test performed for 1 second
(NETWORK	Green	OFF	-	
STATUS)	Red	OFF	-	
		OFF	Not connected	
L/A PORT 1 L/A PORT 2	Green	Blinking	Linking (in communication)	
		ON	Linking (not in communication)	

*1: Hardware failure status indicates an error that cannot continue operation such as a hard watchdog timeout, memory error, or exception interrupt.

-7-segment LED display

The front display of the display section changes depending on the inverter status. Details of descriptions are as follows.

Status	Code	
When the power to the inverter is turned ON.	FE is displayed 1s after power on.	А
Stop status		Ir
	When the device is running in the forward direction, F is displayed on the left	v ri
	digit and the right digit rotates clockwise.	S (\ C
Running	The speed of the clockwise rotation varies depending on the operating frequency.	N n c
	When the device is running in the reverse direction, r is displayed on the left digit and the right digit rotates counterclockwise.	D
	The speed of the counterclockwise rotation varies depending on the operating frequency.	

Status	Code
	The alarm code display alternates.
Alarm occurring	<u>::::</u> → - ::
	For details of alarm codes, refer to Chapter 6 "6.3.1 Alarm code list".
Insufficient voltage (with	
run command)	
STO (with run	
command)	
Measuring the	<u>(_) (_)</u>
main capacitor capacity	
DC output	

Drive control

The FRENIC-Ace runs under any of the following control methods. Some function codes apply exclusively to the specific control method.

The enable or disable status is indicated with an icon for each control method within the permissible setting range field in the function code list table.

Icon example: Und	er V/f control	Enable: V/f Disable: V/f							
Function code table permissible setting range field	Control target (H18)	Control method (F42)							
V/f	-	V/f control Dynamic torque vector control (F42=1) V/f control with slip compensation (F42=2)							
PGV/f		V/f control with speed sensor (F42=3) Dynamic torque vector control with speed sensor (F42=4)							
SLV	Speed (H18=0)	Sensorless vector control (F42=5)							
PGV		Vector control with speed sensor (F42=6)							
PM SLV		Sensorless vector control (synchronous motors) (F42=15)							
PM PGV		Vector control with sensor (synchronous motors) (F42=16)							
TRQ	Torque (H18=2, 3)	Vector control (F42=5,6,16)							

For details on the control method, refer to "Function code F42". Note) The FRENIC- Ace is a general-purpose inverter whose operation is customized by frequency-basis function codes, like conventional inverters. Under the speed-basis drive control, however, the control target is a motor speed, not a frequency, so convert the frequency to the motor speed according to the following expression.

Conversion formula Motor speed (r/min) = 120 x frequency (Hz)/number of poles

Changes during operation

Symbol	Changes during operation	Apply and save data
Y*	Yes	When the data is changed using the \checkmark , \checkmark keys, it is immediately reflected in the inverter operation. However, the changed value is not saved in the inverter at this stage. To store data in the inverter, press the \textcircled{l} key. If you abandon changes with the l key without saving with them with the l key, the data before the change will be reflected in the operation of the inverter.
Y	Yes	Even if you change the data using the $\checkmark/$ keys, the changes will not be reflected in the operation of the inverter until you press the key to save the changes and reflect them in the operation of the inverter.
Ν	No	-

Copying data

Symbol	Copiability of data
Y	Data is copied.
Y1	Data is not copied if the inverter capacity differs.
Y2	Data is not copied if the voltage series differs.
Ν	Data is not copied.

Differences according to series

For the E3S/E3E series and the E3N series, the presence of some function codes and the choice of function code data may differ. Y: Configurable function code, N: Non-configurable (not displayed).

When the data selection range is different, such as in the case of function code F01, it is divided into [Basic type/EMC filter built-in type] and [Ethernet built-in type].

F codes **:**Fundamental functions

Function code	Name	Control method and Data setting range	Basic Type, EMC Filter Built-in type	Ethernet built-in Type	Change when running	Data copying
F00	Data protection	V/f PGV/f SLV PGV PM PGV TRO 0: No data protection, no digital setting protection 1 With data protection, no digital setting protection 2: No data protection, with digital setting protection 3: With data protection, with digital setting protection	Y	N	Y	Y
F01	Frequency setting 1	V/f PGV/f SLV PGV PM SLV PM PGV TRO Basic type / EMC filter built-in type] 0: Keypad key operation (• / • keys) 1: Analog voltage input (Terminal [12]) (from 0 to ±10 VDC) 2: Analog voltage input (Terminal [C1](C1 function)) (4 to 20 mA DC) 3: Analog voltage input (Terminal [12]) + analog current input (Terminal [C1]) 5: Analog voltage input (Terminal [12]) + weight (Terminal [C1]) 5: Analog voltage input (Terminal [C1](V2 function)) (from 0 to ±10 VDC) 7: UP/DOWN control 8: Keypad key operation (• / • keys) (with balanceless bumpless)	Y	Y	Ν	Y
		 10: Pattern operation 11: Digital input interface card OPC-DI (option) 12: Pulse train input [Ethernet built-in type] 1: Analog voltage input (Terminal [12]) (from 0 to ±10 VDC) 	Y	Y	N	Y
		 Analog current input (Terminal [C1](C1 function)) (4 to 20 mA DC) Analog voltage input (Terminal [12]) + analog current input (Terminal [C1]) Analog voltage input (Terminal [C1](V2 function)) (from 0 to ±10 VDC) UP/DOWN control Pattern operation 				
F02	Operation method	V/f PGW/f SLV PGV PM SLV PM PGV TRQ 0: Keypad operation (Rotation direction input: terminal block) 1: External signal (digital input) 2: Keypad operation (forward rotation) 3: Keypad operation (reverse rotation)	Y	N	N	Y
F03	Maximum output frequency 1	V/1 PGV/1 SLV PGV PM SLV PM PGV TRO 5.0 to 599.0 Hz	Y	Y	N	Y
F04	Base frequency 1	V/T PGV/T SLV PGV PM SLV PM PGV TRO 5.0 to 599.0 Hz	Y	Y	N	Y
F05	Rated voltage at base frequency 1	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0: AVR disable (output voltage proportional to power voltage) 00 to 240 V: AVR operation (200V series) 160 to 500 V: AVR operation (400 V series)	Y	Y	N	Y2
F06	Maximum output voltage 1	V/I PGW/I SLV PGV PM SLV PM PGV TRQ 80 to 240 V: AVR operation (200V series) 160 to 500 V: AVR operation (400 V series) 160 to 500 V: AVR operation (400 V series)	Y	Y	N	Y2
F07 F08	Acceleration time 1 Deceleration time 1	V/f PGV/f SLV PGV PM SLV PM PGV TRO 0.00 to 6000s * 0.00 is for acceleration and deceleration time cancel (when performing soft-start and stop externally)	Y Y	Y Y	Y Y	Y Y
F09	Torque boost 1	V/I PGV/I SLV PGV PM SLV PM PGV TRO 0.0 to 20.0% (% value against base frequency voltage 1)	Y	Y	Y*	Y
F10	Electronic thermal overload protection for motor 1 (Select motor characteristics)	V/f PGV/f SLV PGV PM PGV TRO 1: Enable (for a general-purpose motor with self-cooling fan) 2: Enable (for an inverter-driven motor with separately powered cooling fan)	Y	Y	Y	Y
F11	(Operation level)	0.00 A (disable), current value of 1 to 135% of inverter rated current set with A unit	Y	Y	Y	Y1 Y2
F12	(Thermal time constant)	0.5 to 75.0min	Y	Y	Y	Y
F14	Restart mode after momentary power failure (operation selection)	V/f PGV/f SLV PGV PM SLV PM PGV TRO 0: Trip immediately 1: Trip after a recovery from power failure 2: Trip after momentary deceleration is stopped 2: Continue to run (for heavy inertia load or general load) 3: Restart from frequency at power failure (for general load) 5: 5: Restart from starting frequency 1: <t< td=""><td>Y</td><td>Y</td><td>Y</td><td>Y</td></t<>	Y	Y	Y	Y
F15	Frequency limiter (upper limit)	V/f PGV/f SLV PGV PM SLV PM PGV TRO	Y	Y	Y	Y
F16	(Lower limit)	0.0 to 599.0Hz	Y Y	Y Y	Y Y*	Y Y

*2 A standard value is set for each capacity. *3 The rated current of the motor is set. For details, refer to the FRENIC-Ace (E3) User's Manual.

F codes :Fundamental functions

Function code	Name	Control method and Data setting range	Basic Type, EMC Filter Built-in type	Ethernet built-in Type	Change when running	Data copying
F20	DC braking 1 (starting frequency)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0.0 to 60.0Hz	Y	Y	Y	Y
F21	(Operation level)	0 to 100% (HHD mode) 0 to 80% (HD/HND mode) 0 to 60% (HND mode) (Only FRN0001E3 -7G to FRN0012E3 -7G/FRN0012E3 -2G to FRN0020E3 -2G/FRN0007E3 -4G to FRN0012E3 -4G) 0 to 60 % (ND mode)	Y	Y	Y	Y
F22	(Braking time)	0.00 (disable): 0.01 to 30.00 s	Y	Y	Y	Y
F23	Starting frequency 1	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0.0 to 60.0 Hz <td< td=""><td>Y</td><td>Y</td><td>Y</td><td>Y</td></td<>	Y	Y	Y	Y
F24	(Holding time)	0.00 to 10.00s 1.0 s is automatically set when F42 \neq 15, 16 \rightarrow F42 = 15, 16. 0.5 s is automatically set when F42 = 15, 16 \rightarrow F42 \neq 15, 16.	Y	Y	Y	Y
F25	Stop frequency	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0.0 to 60.0Hz	Y	Y	Y	Y
F26	Motor sound (Carrier frequency)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ ND/HND Mode 0.75 to 10 kHz	Y	Y	Y*	Y
F27	(Tone)	V/i PGV/i SLV PGV PM SLV PM PGV TRQ 0: Level 0 (disable) 1: Level 1 2: Level 1 2: Level 2 3: Level 3	Y	Y	Y*	Y
F29	Terminal [FM1] (Operation selection)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0: Voltage output (0 to +10 VDC) 1: Current output (4 to 20 mA DC) 2: Current output (0 to 20 mA DC) 3: Pulse output	Y	Y	Y	Y
F30	(Output gain)	0 to 300%	Y	Y	Y*	Y
F31	(Function selection)	[Basic type / EMC filter built-in type] 0: Output frequency 1 (before slip compensation) 1: Output current 3: Output voltage when alarm occurred 4: Output torque 5: Load factor 6: Power consumption 7: PID feedback value 8: Actual speed/estimated speed 9: DC link bus voltage 10: Universal AO 11: Analog output test (-) 13: Motor output 14: Calibration (+) 15: PID command (SV) 16: PID output (MV) 17: Master-follower angle deviation 18: Inverter cooling fin temperature 21: Torque current command 26: Setting frequency (before acceleration/deceleration calculation) 111 to 124: Customizable logic output signal 1 to 14 [Ethernet built-in type] 0: Output frequency 1 (before slip compensation) 1: Output requency 2 (after slip compensation) 2: Output voltage when alarm occurred 4: Output torque 5: Load factor 6: Doutput frequency 1 (before slip compensation) 1: Output trequency 2 (after slip compensation) 2: Output voltage when alarm occurred 4: Output voltage when alarm occurred </td <td>Y</td> <td>Y</td> <td>Y</td> <td>Y</td>	Y	Y	Y	Y

Function code	Name	Control method and Data setting range	Basic Type, EMC Filter Built-in type	Ethernet built-in Type	Change when running	Data copying
F32	Terminal [FM2] (Operation selection)	0: Voltage output (0 to +10 VDC) 1: Current output (4 to 20 mA DC) 2: Current output (0 to 20 mA DC)	Y	N	Y	Y
F33	Terminal [FMP] (Pulse rate)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 25 to 32000 p/s (number of pulse at 100%)	Y	Y	Y*	Y
F34	Terminal [FM2] (Output gain)	0.1 to 300%	Y	Ν	Y*	Y
F35	(Function selection)	Same as F31	Y	Ν	Y	Y
F37	Load selection/ Auto torque boost/ Auto energy-saving operation 1	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0: Quadratic-torque load 1: Constant torque load 1: Constant torque load 1: Constant torque load 2: Auto torque boost 3: Auto energy-saving operation (quadratic-torque load) 4: Auto energy-saving operation (constant torque load) 5: Auto energy-saving operation with auto torque boost	Y	Y	Ν	Y
F38	Stop frequency (detection mode)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0: Speed detection value / estimated speed 1: Reference speed 1: Reference speed	Y	N	N	Y
F39	(Holding time)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0.00 to 10.00s	Y	Y	Y	Y
F40	Torque limiter 1-1	V/f PGV/f SLV PGV PM SLV PM PGV TRQ	Y	Y	Y	Y
F41 F42	Torque limiter 1-2 Drive control selection 1	-300 to 0 to 300%; 999 (Disable)	Y Y	Y Y	Y N	Y Y
		V/f PGV/f SLV PGV PM SLV PM PGV TRO [Basic type / EMC filter built-in type] 0: V/f control without slip compensation 1: Dynamic torque vector control 2: V/f control with slip compensation 3: V/f control with speed sensor 4: Dynamic torque vector control with sensor 5: Sensorless vector control 6: Vector control with speed sensor 15: Sensorless vector control (synchronous motors) 16: 16: Vector control with sensor (synchronous motors) 17: Dynamic torque vector control 18: V/f control with sensor (synchronous motors) 19: Vector control with sensor (synchronous motors) 10: Vector control 10: 11: Dynamic torque vector control 2: 12: V/f control with slip compensation 13: Dynamic torque vector control 14: Dynamic torque vector control 15: Sensorless vector control 15: Sensorless vector control				
F43	Current limiter (mode selection)	V/I PGV/I SLV PGV PM SLV PM PGV TRQ 0: Disable 1: Enable at constant speed (disable during ACC/DEC) 2: Enable during ACC/constant speed operation (disable during DEC)	Y	Y	Y	Y
F44	(Operation level)	20 to 200% (rated current of the inverter for 100%)	Y	Y	Y	Y
F50	Electronic thermal overload (for braking resistor protection) (discharging capacity)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 1 to 9000 kWs OFF (cancel)	Y	Y	Y	Y1 Y2
F51	(Permissible average loss)	0.001 to 99.99kW	Y	Y	Y	Y1 Y2
F52	(Braking resistance value)	0.00: No resistance necessary method (FRENIC-Multi compatible operation) 0.01 to 999Ω	Y	Y	Y	Y1 Y2
F58	Terminal [FM1] (Filter)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0.00 to 5.00s	Y	Y	Y	Y
F59	(Bias)	-100.0 to 100.0%	Y	Y	Y*	Y
F62	Terminal [FM2] (Filter)	0.00 to 5.00s	Y	Ν	Y	Y
F63	(Bias)	-100.0 to 100.0%	Y	N	Y*	Y
F80	Switching between ND. HD. HND and HHD drive medes	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0: HHD specification 1: HND specification 3: HD specification 4: ND specification	Y	Y	N	Y

*12 FRN 0.1 to 15E3S/E/T/N-2J/4J will be 180% and FRN 18.5 to 22E3S/E/T/N-2J/4J will be 160%.

Ecodes : Extension Terminal Functions (terminal functions)

Function code	Name	Control method and Data setting range	Basic Type, EMC Filter Built-in type	Ethernet built-in Type	whon	Data copying
E01	Terminal [X1] (Function selection)	Table 1 Refer to E01 to E05 in the control input terminal setting table.	Y	Y	Ν	Y
E02	Terminal [X2]		Y	Y	Ν	Y
E03	Terminal [X3]		Y	Y	Ν	Y
E04	Terminal [X4]		Y	N	Ν	Y
E05	Terminal [X5]		Y	Ν	Ν	Y

Table 1 Control input terminal setting table (Y is a selectable choice, N is a non-selectable choice)

	Function cod	de and Name					
E01 to E05	E70	E98,E99	o101 to o113	Control method and Data setting range		Basic Type, EMC Filter	Ethernet built-in
Terminals [X1] to [X5]	For remote keypad TP-E2 M/Shift keys	Terminals [FWD][REV]	Terminals [I1] to [I13] (for OPC-DI)			Built-in type	Туре
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
				0 (1000): Multistep frequency selection (0 to 1 steps)	[SS1]		
Y	Y	Y	Y	1 (1001): Select multistep frequency (0 to 3 steps)	[SS2]	Y	Y
				2 (1002): Select multistep frequency (0 to 7 steps)	[SS4]	Y	Y
				3 (1003): Select multistep frequency (0 to 15 steps)	[SS8]	Y	Y
Y	Y	Y	Y	4 (1004): Select ACC/DEC time (2 steps)	[RT1]	Y	Y
				5 (1005): Select ACC/DEC time (4 steps)	[RT2]	Y Y	Y Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 6 (1006): Select 3-wire operation	[HLD]	ř	ľ
Y	Y	Y	Y	7 (1007): Coast to a stop command	[HED] [BX]	Y	Y
Ŷ	N	Y	Y	8 (1008): Reset alarm (Abnormal)	[RST]	Y	Y
Y	N	Y	Y	9 (1009): External alarm (9 = Active OFF/1009 = Active ON)	[THR]	Y	Y
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
Y	Y	Y	Y	10 (1010): Ready for jogging	[JOG]		
Y	Y	Y	Y	11 (1011): Select frequency setting 2/ frequency setting 1	[Hz2/Hz1]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
r	Ť	Ť	r	12 (1012): Select motor 2	[M2]		
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
	·		······	13: DC braking command PMSLV is valid only when P30 = 0	[DCBRK]		
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
				14 (1014): Select torque limit 2/ torque limit 1	[TL2/TL1]		
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
Y	N	Y	Y	15: Switch to commercial power (50 Hz)	[SW50]		
				16: Switch to commercial power (60 Hz)	[SW60]	Y Y	Y Y
Y	N	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 17 (1017): UP command	[UP]	ř	
'	IN IN		'	18 (1018): DOWN command	[DOWN]	Y	Y
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ	[50111]	Y	N
Y	Y	Y	Y	19 (1019): Allow function code editing (data change enabled)	[WE-KP]	-	
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ	·····	Y	Y
Y	Y	Y	Y	20 (1020): Cancel PID control	[Hz/PID]		
Y	Y	Y	Y	21 (1021): Switch normal/ inverse operation	[IVS]	Y	Y
Y	N	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
I				22 (1022): Interlock	[IL]		
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
·····				23 (1023): Cancel torque control	[Hz/TRQ]		
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
				24 (1024): Select link operation (RS-485, BUS option)	[LE]		
Y	N	Y	Y	25 (1025): Universal DI	[U-DI]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 26 (1026): Select auto search for idling motor speed at starting	[STM]	Y	Y
					[3110]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 30 (1030): Force to stop (30 = Active OFF/1030 = Active ON)	[STOP]		
	+		+	V/f PGV/f SLV PGV PM SLV PM PGV TRQ	[0101]	Y	Y
Y	Y	Y	Y	32 (1032): Pre-excite	[EXITE]		
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
Y	Y	Y	Y	33 (1033): Reset PID integral and differential terms	[PID-RST]		
				34 (1034): Hold PID integral term	[PID-HLD]	Y	Y

	Function cod	de and Name					
E01 to E05	E70	E98,E99	o101 to o113	Control method and Data setting range	Bas EM	ic Type, C Filter t-in type	Ethernet built-in
Terminals	For remote keypad TP-E2	Terminals	Terminals [I1] to [I13]	Control method and bata setting range	Buil	t-in type	Туре
[X1] to [X5]	M/Shift keys	[FWD][REV]	(for OPC-DI)			Y	
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 35 (1035): Local (keypad) command selection		Y	N
Y	Y	Y	Y		RE]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
т т	т т	т 	r	39: Condensation prevention [D]	NP]		
Y	N	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 42 (1042): Activate the limit switch at start point	1.01	Y	N
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ	LS]	Y	
Y	Y	Y	Y		6/R]	•	
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	N
				44 (1044): Serial pulse receiving mode [SPI	RM]		
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	N
				· · · · · · · · · · · · · · · · · · ·	TN]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 46 (1046): Overload stop enable command [C	LS]		·
Y		Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	N
т	Y	т 	r	47 (1047): Servo lock command [LO	скј		
Y*1	N	N	N	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	N
Y*2	N	Y	Y	48: Pulse train input *1 Terminal [X5] only (E05) [f 49 (1049): Pulse train sign terminal *2 Excluded the terminal [X5] (E01 to E04) [Si	PIN]	Y	N
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
Y	Y	Y	Y		TZ]		
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
				59 (1059): Battery operation selection [BAT	RY]	·····	
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ 60 (1060): Select torque bias 1	B1]	Y	Y
Y	Y	Y	Y	L	B2]	Y	Y
					TB]	Y	Y
Y	N	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
				65 (1065): Check brake [BR	KE]		
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 70 (1070): Cancel line speed control [Hz/L] [Hz/L]	SCI	Y	N
I				71 (1071): Hold line speed control frequency in the memory [LSC-H		Y	N
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
Υ	N	Y	Y	72 (1072): Count the run time of commercial power-driven motor 1 [CRUN-	M1]		
				73 (1073): Count the run time of commercial power-driven motor 2 [CRUN-	M2]	Y	Y
Υ	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 76 (1076): Select droop control [DRO	OPI	Y	Y
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ	01]	Y	Y
Y	Y	Y	Y	78 (1078): Speed control parameter selection 1 [MPR	M1]		
				79 (1079): Speed control parameter selection 2 [MPR	M2]	Y	Y
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
Y	Y	Y	Y		LC] TC]	Y	Y
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
Y	Y	Y	Y	82 (1082): Anti-regenerative control cancel [AR-C	CL]		
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	N
				83 (1083): PG input switching [PG-S	EL]		
Υ	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 84 (1084): Acceleration/deceleration cancel (bypass)	PS]	Y	Y
			+	V/f PGV/f SLV PGV PM SLV PM PGV TRQ	1		+
Y	N	Y	Y		DG]	Y	Y
				95: Reverse rotation JOG [RJ	DG]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
					DIR]	Y	Y
N	N	Y	Y	V/F PGV/F SLV PGV PM SLV PM PGV TRQ 98: Run forward command [F\	VD]		
					EV]	Y	Y

E codes : Extension Terminal Functions (terminal functions)

Table 1 Control input terminal setting table

	Function cod	le and Name							
E01 to E05	E70	E98,E99	o101 to o113	Control method and Data setting range	Basic Type, EMC Filter	Ethernet			
Terminals [X1] to [X5]	For remote keypad TP-E2 M/Shift keys	Terminals [FWD][REV]	Terminals [I1] to [I13] (for OPC-DI)		Built-in type	Туре			
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 100: No assignment	[NONE]	Y	Y		
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRO 119 (1119): Speed regulator P selection	[P-SEL]	Y	N		
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRO 121 (1121) to 129(1129): Customizable logic input 1 to 9 "CLI1"	[CLI1] to [CLI9]	Y	Y		
	Y					V/f PGV/f SLV PGV PM SLV PM PGV TRO 134 (1134): Forced operation command	[FMS]	Y	Y
Y		Y	Y Y	V/f PGV/f SLV PGV PM SLV PM PGV TRO 135 (1135): Travel/absolute position switching	[INC/ABS]	Y	N		
				V// PGV// SLV PGV PM SLV PM PGV TRO 136 (1136): Orientation command	[ORT]	Y	N		
Y	Y	Y	Y	142 (1142): Position preset command	[P-PRESET]	Y	N		
·····				144 (1144): Positioning data change command	[POS-SET]	Y	N		
Y	Y	Y	Y	145 (1145): Positioning data selection	[POS-SEL1]	Y	N		
Y	Y	Y	Y	146 (1146): Positioning data selection	[POS-SEL2]	Y	N		
Ŷ	Ŷ	Y	Y	147 (1147): Positioning data selection 4	[POS-SEL4]	Y	N		
Y	Y	Y	Y	V/f PGW/f SLV PGV PM SLV PM PGV TRQ 171 (1171): PID control multistage command 1	[PID-SS1]	Y	Y		
				172 (1172): PID control multistage command 2	[PID-SS2]	Y	Y		
				* Inside the () is the negative logic signal (OFF at short-circuit).					

E codes : Extension Terminal Functions (terminal functions)

Function code	Name	Control method and Data setting range	Basic Type, EMC Filter Built-in type	Ethernet built-in Type	Change when running	Data copying
E10	Acceleration time 2	V/f PGV/f SLV PGV PM SLV PM PGV TRQ	Y	Y	Y	Y
E11	Deceleration time 2	0.00 to 6000 s	Y	Y	Y	Y
E12	Acceleration time 3	* 0.00 is for acceleration and deceleration time cancel (when performing soft-start and	Y	Y	Y	Y
E13	Deceleration time 3	stop externally)	Y	Y	Y	Y
E14	Acceleration time 4		Y	Y	Y	Y
E15	Deceleration time 4		Y	Y	Y	Y
E16	Torque limiter 2-1	V/f PGV/f SLV PGV PM SLV PM PGV TRQ	Y	Y	Y	Y
E17	Torque limiter 2-2	-300 to 0 to 300%; 999 (Disable)	Y	Y	Y	Y
E20	Terminal [Y1] (Function selection)	Table 2 Refer to E20 to E27 in the control output terminal setting table.	Y	Y	Ν	Y
E21	Terminal [Y2]		Y	N	Ν	Y
E27	Terminal [30A/B/C] (Ry output)		Y	Y	Ν	Y

Table 2 Control output terminal setting table (Y is a selectable choice, N is a non-selectable choice)

	Function co	de and Name					
E20 to E21, E27	E71	o01 to o03	o121 to o128			Basic Type, EMC Filter	Ethernet built-in
Terminals [Y1] to [Y2], [30A/B/C]	For remote keypad M-LED M/Shift keys	Terminals [Y6A/C] to [Y8A/C] (for OPC-RY)	Terminals [01] to [08] (for OPC-DIO)	Control method and Data setting range		Built-in type	Туре
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0 (1000): Inverter running	[RUN]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRO 1 (1001): Frequency (speed) arrival	[FAR]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 2 (1002): Frequency (speed) detected	[FDT]	Y	Y
Y	Y	Y	Y	3 (1003): Under voltage detected (inverter stopped)	[LU]	Y	Y
Y	Y	Y	Y	4 (1004): Detected torque polarity	[B/D]	Y	Y
Y	Y	Y	Y	5 (1005): Inverter output limiting	[IOL]	Y	Y
Y	Y	Y	Y	6 (1006): Auto-restarting after momentary power failure	[IPF]	Y	Y
Y	Y	Y	Y	7 (1007): Motor overload early warning	[OL]	Y	Y
Y	Y	Y	Y	8 (1008): Keypad operation	[KP]	Y	N
Y	Y	Y	Y	10 (1010): Inverter ready to run	[RDY]	Y	Y
Y	N	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 15 (1015): Switch MC on the input power lines	[AX]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRO 16 (1016): Pattern operation stage transition 17 (1017): Pattern operation cycle completed 18 (1018): Pattern operation stage 1 19 (1019): Pattern operation stage 2	[TU] [TO] [STG1] [STG2]	Y Y Y Y	Y Y Y Y
Y	Y	Y	Y	20 (1020): Pattern operation stage 4 V/f PGV/f SLV PGV PM SLV PM PGV TRO 21 (1021): Frequency (speed) arrival 2	[STG4] [FAR2]	Y Y	Y Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 22 (1022): Inverter output limiting with delay	[IOL2]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 25 (1025): Cooling fan in operation	[FAN]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 26 (1026): Auto-resetting	[TRY]	Y	Y
Y	N	N	N	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 27 (1027): Universal DO	[U-DO]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 28 (1028): Heat sink overheat early warning	[OH]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 29 (1029): Master-follower operation complete	[SY]	Y	N
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 30 (1030): Lifetime alarm	[LIFE]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 31 (1031): Frequency (speed) detected 2	[FDT2]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 33 (1033): Reference loss detected	[REF OFF]	Y	Y

	Function co	de and Name				
E20 to E21, E27	E71	o01 to o03	o121 to o128		Basic Type, EMC Filter	Etherne built-in
Terminals [Y1] to [Y2], [30A/B/C]	For remote keypad M-LED M/Shift keys	Terminals [Y6A/C] to [Y8A/C] (for OPC-RY)	Terminals [01] to [08] (for OPC-DIO)	Control method and Data setting range	Built-in type	Туре
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 35 (1035): Inverter outputting [RUN2]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 36 (1036): Overload prevention controlling [OLP]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 37 (1037): Current detected [ID] 38 (1038): Current detected 2 [ID2]	Y Y	Y Y
				39 (1039): Current detected 3 [ID3] 41 (1041): Low current detected [IDL]	Y Y Y	Y Y Y
Y	Y	Y	Y	V/f PGW/f SLV PGV PM PGV TRQ 42 (1042): PID alarm [PID-ALM] [PID-ALM] [PID-CTL] 43 (1043): Under PID control [PID-CTL] [PID-CTL]	Y	Y
Y	Y	Y	Y	44 (1044): Under sleep mode of PID control [PID-STP] V/t PGV/t SLV PGV PM PGV TRO 45 (1045): Low torque detected [U-TL]	Y Y	Y
				46 (1046): Torque detected 1 [TD1] 47 (1047): Torque detected 2 [TD2] V/f PGV/f SLV PGV PM SLV PM PGV TRQ	Y Y Y	Y Y Y
Y	Y	Y	Y	48 (1048): Motor 1 selected [SWM1] 49 (1049): Motor 2 selected [SWM2]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRO 52 (1052): Forward rotation [FRUN] 53 (1053): Reverse rotation [RRUN]	Y Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 54 (1054): Under remote mode [RMT]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 55(1055): Input of run command [AX2]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 56 (1056): Motor overheat detected by thermistor [THM]	Y	Y
Y	Y	Y	Y	V/f PGW/f SLV PGV PM SLV PM PGV TRQ 57 (1057): Mechanical brake control [BRKS]	Y Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM PGV TRQ 58 (1058): Frequency (speed) detected 3 [FDT3] V/f PGV/f SLV PGV PM SLV PM PGV TRQ	Y	Y
Y	Y	Y	Y	59 (1059): Current input wire break detection (terminal [C1] and [C2])[C10FF]	Y	Y
Y Y	Y Y	Y	Y	70 (1070): Speed valid [DNZS] v/r PGV/r SLV PGV PM PGV TRQ	Y	Y
Υ Υ	Y Y	Y Y Y	Y Y Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ	Y	Y
Y	Y	Y	Y	72 (1072): Frequency (speed) arrival 3 [FAR3] V/f PGV/f SLV PGV PM PGV TRQ 76 (1072): Speed minimately IDO EDD IDO EDD IDO EDD	Y	Y
Y	Y	Y	Y	76 (1076): Speed mismatch [PG-ERR] V/f PGV/f SLV PGV PM SLV PM PGV TRQ 77 (1077): Low DC link bus voltage detection [U-EDC]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 79 (1079): During decelerating at momentary power failure [IPF2]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM PGV TRQ 80(1080): Stop position override alarm [OT]	Y	N
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 81(1081): Under position [TO]	Y	N
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 82 (1082): Positioning complete [PSET]	Y	N
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSLV PM PGV TRQ 83 (1083): Current position count over-flowed	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRO 84 (1084): Maintenance timer counted up [MNT]	Y	Y
Υ	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRO 87 (1087): Frequency arrival and detected [FARFDT]	Y	Y

E codes : Extension Terminal Functions (terminal functions)

 Table 2
 Control input terminal setting table
 (Y is a selectable choice, N is a non-selectable choice)

Function code and Name							
E20 to E21, E27	E71	o01 to o03	o121 to o128	Control method and Data setting range		Basic Type, EMC Filter	Ethernet built-in
Terminals [Y1] to [Y2], [30A/B/C]	For remote keypad M-LED M/Shift keys	Terminals [Y6A/C] to [Y8A/C] (for OPC-RY)	Terminals [01] to [08] (for OPC-DIO)			Built-in type	Туре
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
		X		90 (1090): Alarm content 1	[AL1]		
Y	N	Y	Y	91 (1091): Alarm content 2 92 (1092): Alarm content 4	[AL2]	Y Y	Y Y
				93 (1093): Alarm content 8	[AL4] [AL8]	Y Y	Y Y
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ	[/1.0]	Υ Υ	Y
Y	Y	Y	Y	95 (1095): Forced operation	[FMRUN]	I	'
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
Y	Y	Y	Y	98 (1098): Light alarm	[L-ALM]		
				99 (1099): Alarm output	[ALM]	Y	Y
N	Y	N	N	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
		11	11	100: No assignment	[NONE]		
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
Y	Y	Y	Y	101 (1101): EN circuit failure detected	[DECF]		
				102 (1102): EN terminal input OFF	[ENOFF]	Y	Y
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
				105 (1105): Braking transistor broken	[DBAL]		
Y	Y	Y	Y	V/f PGV/f SLV PGV PM PGV TRQ 111 (1111) to 124(1124): Customizable logic output signal 1 to 14	[CLO1] to	Y	Y
					[CLO14]	Y	Y
Y	N	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 125 (1125): Integral power pulse output	[POUT]	T	
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
Y	Y	Y	Y	131 (1131): Speed limiting	[S-LIM]		·
				V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
Y	Y	Y	Y	132 (1132): Torque limit level	[T-LIM]		
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	Y
T	I I	I	T	133 (1133): Low current detection	[IDL2]		
Y	Y	Y	Y	V/f PGV/f SLV PGV PM SLV PM PGV TRQ		Y	N
				251(1251): Shift key ON/OFF status	[MTGL]		
				* Inside the () is the negative logic signal (OFF at short-circuit)			

Function code	Name	Control method and Data setting range	Basic Type, EMC Filter Built-in type	Ethernet built-in Type	Change when running	Data copying
E29	Frequency arrival delay timer (FAR2)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0.01 to 10.00s	Y	Y	Y	Y
E30	Frequency arrival detection width (Detection width)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0.0 to 10.0Hz	Y	Y	Y	Y
E31	Frequency (operation level)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ	Y	Y	Y	Y
E32 E34	detection 1 (Hysteresis width) Overload early warning/Current	0.0 to 599.0Hz	Y	Y Y	Y Y	Y Y1
	detection (operation level)	V/t PGV/t SLV PGV PM SLV PM PGV TRQ 0.00 (Disable), 1 to 200% of inverter rated current (Inverter rated current dependent on F80)				Y2
E35 E36	Frequency detection 2 (Timer)	0.01 to 600.00s	Y	Y Y	Y Y	Y Y
	(Timer)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0.0 to 599.0Hz				
E37	Current detection 2/Low current detection (Timer)	Same as E34	Y	Y	Y	Y1 Y2
E38	(Timer)	Same as E35	Y	Y	Y	Y
E39	Constant rate of feeding coefficient 1/ Speed display auxiliary coefficient 1	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0.000 to 9999	Y	Y	Y	Y
E42	LED display filter	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0.0 to 5.0s	Y	Y	Y	Y
E43	LED monitor (display selection) (Display when stopped)	V/r PGV/r SLV PAV PM SLV PM PGV TRO 0: Speed monitor (Selectable with E48) Output current Output current 4: Output voltage when alarm occurred Eaclalated motor output torque when alarm occurred 9: Power consumption Image: Calculated motor output torque when alarm occurred 10: PID process command Image: Calculated motor output 11: PID process command Image: Calculated motor 12: PID feedback value Image: Calculated motor 13: Timer value Image: Calculated motor 14: PID output Image: Calculated motor 15: Load factor Image: Calculated motor 16: Motor output Image: Calculated motor 17: Analog signal input monitor Image: Calculated motor 21: Current position Image: Calculated motor 23: Torque current (%) Image: Calculated motor 24: Magnetic flux command(%) Image: Calculated motor 25: Input watt-hour Image: Calculated motor 26: Valor torque bias Image: Calculated motor <td>Y Y</td> <td>N</td> <td>Y</td> <td>Y</td>	Y Y	N	Y	Y
E48	LED monitor details (Speed monitor selection)	1: Output value V/f PGV/f SLV PGV PM PGV TRQ 0: Output frequency 1 (before slip compensation) 1: Output frequency 2 (after slip compensation) 2: Set frequency 3: Motor speed 4: Feed speed 5: Line speed 6: Constant feeding rate time 7: Speed (%)	Y	N	Y	Y
E49	Torque Command Monitor (Polarity selection)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0: Torque polarity Torque polarity Trq Trq <td< td=""><td>Y</td><td>Y</td><td>Y</td><td>Y</td></td<>	Y	Y	Y	Y
E50	Display coefficient for speed monitor	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0.01 to 600.00	Y	Y	Y	Y
E51	Display coefficient for "Input watt-hour data"	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0.000 (Cancel/Reset), 0.001 to 9999 0.001 to 9999 <t< td=""><td>Y</td><td>Y</td><td>Y</td><td>Y</td></t<>	Y	Y	Y	Y
E52	Keypad menu selection	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0: Function code data setting mode (Menu 0, Menu 1, and Menu 7) 1: Function code data check mode (Menu 2 and Menu 7) 2: Full-menu mode	Y	Y	Y	Y
E54	Frequency detection 3 (Level)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0.0 to 599.0Hz	Y	Y	Y	Y
E55	Current detection 3 (Level)	Same as E34	Y	Y	Y	Y1 Y2
E56	. ,	Same as E35	Y	Y	Y	Y

*3 The rated current of the motor is set. For details, refer to the FRENIC-Ace (E3) User's Manual.

Function codes Keypad External Basic v	dimensions diac
	aram specifications
	specifications specifications
	nomenclature var

E codes : Extension Terminal Functions (terminal functions)

Function code	Name	Control method and Data setting range	Basic Type, EMC Filter Built-in type	Ethernet built-in Type	Change when running	Data copying
E57	Integral power pulse output unit	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0: Pulse output every 0.1 kWh 1: Pulse output every 1 kWh 2: Pulse output every 10 kWh 3: Pulse output every 10 kWh 4: Pulse output every 1000 kWh	Y	Y	Y	Y
E61	Terminal [12] (extended function)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ	Y	Y	Ν	Y
E62	Terminal [C1] (C1 function) (extended function)	0: No extension function assignment 1: Auxiliary frequency setting 1	Y	Y	Ν	Y
E63	Terminal [V2] (extended function)	 Auxiliary frequency setting 2 PID command 1 PID Dfeedback value Ratio setting Analog torque limiter A Analog torque limit value B Torque bias Torque command Torque command Torque current command Acceleration/deceleration time ratio setting Upper limit frequency Lower limit frequency Auxiliary frequency setting 4 Speed limit for forward rotation (FWD) Speed limit for reverse rotation (REV) Analog signal input monitor 	Y	Y	Ν	Y
E64	Saving of digital reference frequency	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0: Auto saving (main power is turned off) 1: Save by turning (main power of the save of the sa	Y	Y	Y	Y
E65	Reference loss detection (Continuous running frequency)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0: Stop deceleration 20 to 120%, 999: Cancel	Y	Y	Y	Y
E70	Shift key (Function selection)	Table 1 Refer to E70 in the control input terminal setting table.	Y	Ν	Ν	Y
E71	M-LED indicator (Function selection)	Table 2 Refer to E71 in the control input terminal setting table.	Y	Ν	Ν	Y
E76	DC link bus low-voltage detection level	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 200 to 400 V (200V series) 400 to 800 V (400V series) 100 to 800 V (400V series) 100 to 800 V (400V series)	Y	Y	Y	Y2
E78	Torque detection 1 (Level)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0 to 300%	Y	Y	Y	Y
E79	(Timer)	0.01 to 600.00s	Y	Y	Y	Y
E80	Torque detection 2/ low torque detection (Level)	Same as E78	Y	Y	Y	Y
E81	(Timer)	Same as E79	Y	Y	Y	Y
E98	Terminal [FWD] (Function selection)	Table 1 Refer to E98 and E99 in the control input terminal setting table.	Y	Y	Ν	Y
E99	Terminal [REV] (Function selection)		Y	Y	Ν	Y

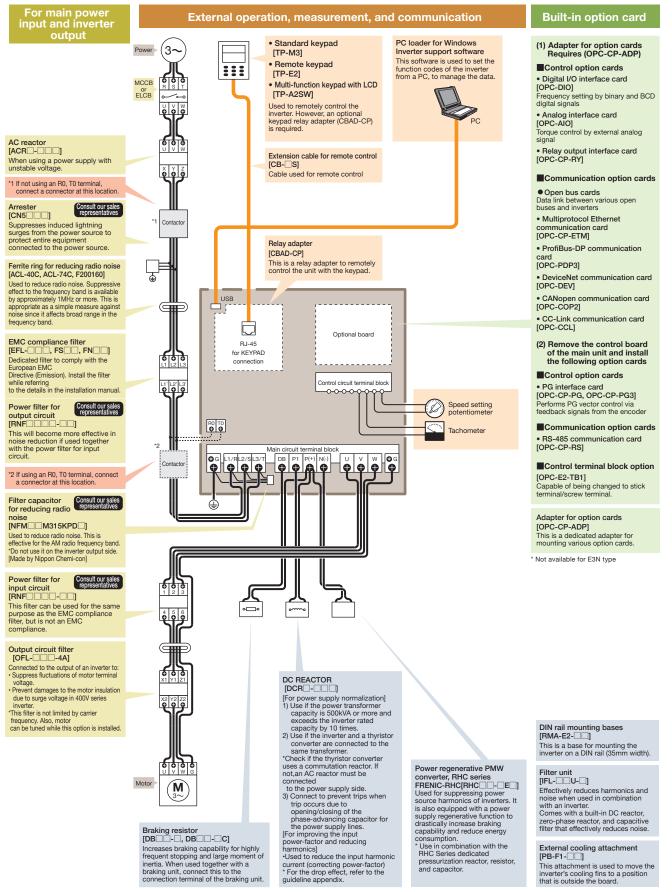
Data unctior Control method and Data setting range Name built-ir opyir C01 Jump frequency Y 1 V/f PGV/f SLV PGV PM SLV PM PGV TRQ C02 2 0.0 to 599.0Hz Y Υ Y Y C03 3 Y Υ Y Y 0.0 to 30.0Hz C04 (Skip width) Y Y Υ Y C05 Multistep frequency 1 Y Υ Y Y V/f PGV/f SLV PGV PM SLV PM PGV TRQ C06 2 0.00 to 599.00Hz Y Υ v Y C07 3 Y Y Υ Υ C08 4 Y Y Υ Υ 5 Y Υ C09 Υ Y Υ C10 6 Y Y v Y Υ C11 Y Y 7 Y C12 8 Y Υ Y C13 9 Υ Y Y Y Υ C14 10 Y Υ Y Y C15 Υ 11 Y Y C16 12 Y Υ Y Y C17 13 Y Y Y Υ Y C18 14 Y Υ Υ C19 15 Y Y Υ Υ C20 Jogging frequency V/f PGV/f SLV PGV PM SLV PM PGV TRQ Y Υ Υ Υ 0.00 to 599.00Hz C21 Pattern operation / timed V/f PGV/f SLV PGV PM SLV PM PGV TRQ Y Υ Ν Y operation (Operation selection) [Basic type / EMC filter built-in type] 0: cycle operation 1: Repetition operation 2: Constant speed operation after 1 cycle operation 3: Timed operation [Ethernet built-in type] 0: cycle operation 1: Repetition operation 2: Constant speed operation after 1 cycle operation C22 Y Υ Y Y (Stage 1) C23 (Stage 2) Y Υ γ Y Special setting: Press the key 3 📟 times. Y C24 (Stage 3) Y Y Y 1st: Set run time 0.0 to 6000 s and press the ekey. (Stage 4) Y Y C25 Υ Y 2nd: Set rotational direction F (forward) or r (reverse) and press the en key. C26 (Stage 5) Y Υ Y Y 3rd: Set acceleration/deceleration time 1 to 4 and press the each key. C27 (Stage 6) Y Υ Y Y C28 (Stage 7) Y Υ Y Y Same as F01 Frequency setting 2 Y Ν Y C30 Υ C31 Analog input adjustment Y Y Y* Y V/f PGV/f SLV PGV PM SLV PM PGV TRQ (Terminal [12]) (Offset) -5.0 to 5.0% Y Υ Y* Y C32 (Gain) 0.00 to 400.00% Y Y C33 (Filter) 0.00 to 5.00s Υ Y Y* Υ C34 (Gain base point) 0.00 to 100.00% Y Υ C35 (polarity selection) 0: Bipolar Y Υ Ν Υ 1: Unipolar Analog input adjustment Same as C31 Y Υ C36 Υ Y (Terminal [C1]) (Offset) (C1 function) C37 (Gain) Same as C32 Y Y Y* Y Y (Filter) Y C38 Same as C33 Υ Υ C39 (Gain base point) Same as C34 Y Υ Y* Υ C40 (polarity selection) 0: 4 to 20 mA Unipolar Y Υ Ν Υ 1: 0 to 20 mA Unipolar 10: 4 to 20 mA Bipolar 11:0 to 20 mA Bipolar C41 Analog input adjustment Same as C31 Y Υ Y* Υ (Terminal [C1]) (Offset) (V2 function) C42 Same as C32 Υ Y (Gain) Y Y* C43 Υ (Filter) Same as C33 Y Y Y (Gain base point) C44 Same as C34 Y Y Y* Y Y C45 (polarity selection) Same as C35 Y Υ Ν C50 Bias (for frequency setting 1) Y Υ Y Y' V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0.00 to 100.00% (Bias base point)

C codes Control Functions of Frequency (Control function)

Function code	Name	Control method and Data setting range	Basic Type, EMC Filter Built-in type	Ethernet built-in Type	Change when running	Data copying
C51	Bias (PID command 1) (bias value)	V/f PGV/f SLV PGV PM SLV PM PGV TRO -100.0 to 0.000 to 100.00% -100.0 to 0.000 to 0.0000 to 0.0000 to 0.000 to 0.000 to 0.000 to 0.000 to 0.0000 to 0.00	Y	Y	Y*	Y
C52	(Bias base point)	0.00 to 100.00%	Y	Y	Y*	Y
C53	Selection of normal/ (Frequency setting 1)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ	Y	Y	Y	Y
C54	inverse operation (Frequency setting 2)	0: Normal 1: Inverse	Y	Y	Y	Y
C55	Analog input adjustment	V/f PGV/f SLV PGV PM SLV PM PGV TRQ	Y	Y	Y*	Y
	(Terminal [12]) (Bias)	-200.0 to 0.00 to 200.00%				
C56	(Bias base point)	0.00 to 100.00%	Y	Y	Y*	Y
C58	(Display unit)	1: No unit [Flow] [Pressure] [Distance] 2: % 20: m3/s 40: Pa 65: Nm 4: r/min 21: m3/min 41: kPa 66: lb Ft 7: kW 22: m3/h 42: MPa 70: mm 8: HP 23: L/s 43: mbar 71: cm 10: mm/s 24: L/min 44: bar 72: m 11: mm/m 25: L/h 45: mmHg 73: km 12: mm/h 26: GPS 46: PSI 74: in 13: m/s 27: GPM 47: mWG 75: Ft 14: m/min 28: GPH 48: inWG 76: Yd 15: m/h 29: CFS 49: inHg 77: mi 16: FPS 30: CFM 50: WC 17: FPM 17: FPM 31: CFH 51: Ft WG [Concentration] 18: FPH 32: kg/s 52: ATM 80: ppm 19: SPM 33: kg/m 11 14: m/min 61: %C 91 : L 35: lb/s 60: K 90: m3 61: %C	Y	Y	Y	Y
C59	(maximum scale)	-999.0 to 0.00 to 9990.0	Y	Y	N	Y
C60	(minimum scale)	-999.0 to 0.00 to 9990.0	Y	Y	N	Y
C61	Analog input adjustment	V/f PGV/f SLV PGV PM SLV PM PGV TRQ	Y	Y	Y*	Y
	(Terminal [C1] (Bias)	-200.0 to 0.00 to 200.00%				
C62	(C1 function)) (Bias base point)	0.00 to 100.00%	Y	Y	Y*	Y
C64	(Display unit)	Same as C58	Y	Y	Y	Y
C65	(maximum scale)	-999.0 to 0.00 to 9990.0	Y	Y	N	Y
C66	(minimum scale)	-999.0 to 0.00 to 9990.0	Y	Y	Ν	Y
C67	Analog input adjustment (Terminal [C1] (Bias)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ -200.0 to 0.00 to 200.00% -200.00 to 200.00% -200.00% </td <td>Y</td> <td>Y</td> <td>Y*</td> <td>Y</td>	Y	Y	Y*	Y
C68	(V2 function)) (Bias base point)	0.00 to 100.00%	Y	Y	Y*	Y
C70	(Display unit)	Same as C58	Y	Y	Y	Y
C71	(maximum scale)	-999.0 to 0.00 to 9990.0	Y	Y	N	Y
C72	(minimum scale)	-999.0 to 0.00 to 9990.0	Y	Y	N	Y
C89	Frequency compensation 1 via communication (Numerator)	V/f PGV/f SLV PGV PM SLV PM PGV TRQ -32768 to 32767 -32768 -32768 -32768	Y	Y	Y	Y
C90	Frequency compensation 2 via communication (Denominator)	(Keypad display is 8000 to 7FFF (in hexadecimal)) (Interpreted as 1 when the value is set to 0)	Y	Y	Y	Y
C94	Jump frequency 4	V/f PGV/f SLV PGV PM SLV PM PGV TRQ	Y	Y	Y	Y
C95	5	0.0 to 599.0Hz	Y	Y	Y	Y
C96	6		Y	Y	Y	Y
C99	Digital setting frequency	V/f PGV/f SLV PGV PM SLV PM PGV TRQ 0.00 to maximum output frequency (1 to 2)	Y	N	Y*	Y

This catalog covers only the function codes as follows: F codes (Basic functions), E codes (Extension terminal functions) , C codes (Control functions) For the other function codes, refer to the "FRENIC-Ace User's Manual (24A7-E-0173)"

High performance Standard type Inverter

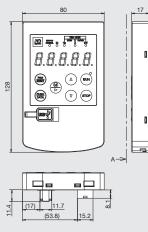

Function codes

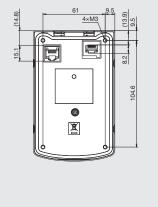
M E M O

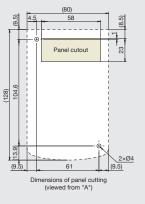
Options

Connection configuration

Peripheral and structure options


Options


Options


Remote keypad [TP-E2]

The FRENIC loader and inverter can be connected via USB. When combined with the FRENIC loader, various types of information on the inverter can be stored in the memory of the touch panel.

Note 1) The keypad cannot be attached directly to the main unit of the FRENIC-Ace. Note 2) Connect it using the optional keypad relay adapter (CBAD-CP) and LAN cable (straight) with RJ-45 connector. Note 3) Cannot be installed in Ethernet built-in type.

Multi-function keypad [TP-A2SW]

- Equipped with a highly visible LCD.
- Supports a total of 20 languages, including Japanese hiragana, katakana and kanji.
- Parameter changes and mantenance can be perfpromed remotely using a mobile device built-in bluetooth.

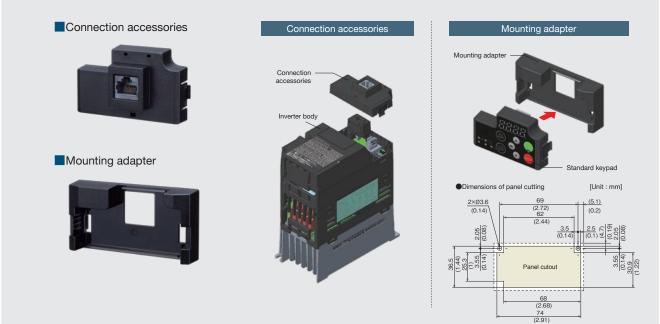
	• • • DES WAS ANN
100 E	0.00Hz
STO Iout PWR	DP ^{0ct/81} Thu 8.884 8.864
	. 🐨 💿


Item	Specification	Remarks
Supported languages	Supports a total of 20 languages, including Japanese, English and Chinese.	
Copy function	Three sets can be stored.	
USB port	Type.mini B	FRENIC Loader for Windows 10 or later
Wireless communi- cation network	Bluetooth Ver.5.0	FRENIC Mobile Loader for Android 8 or later
micro SD card*	SDHC standards (max 32GB)	Trace back function
Battery*	CR2032	Real-time clock function
Extension cable	ANSI/TIA/EIA568A Category 5 (10BASE-T/100BASE-TX)	Option type: CB-
Connector for keypad	RJ-45	
Enclosure	Outside cabinet: IP55, inverter back side: IP20	
Approx.weight	135 g	
*SD card not included		

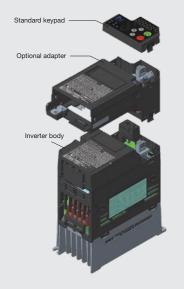
Note 1) The keypad cannot be attached directly to the main unit of the FRENIC-Ace. Note 2) Connect it using the optional keypad relay adapter (CBAD-CP) and LAN cable (straight) with RJ-45 connector. Note 3) Cannot be installed in Ethernet built-in type.

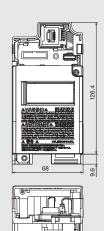
This straight cable is used to connect the RJ-45 connector of the inverter body to the keypad, USB-RS485 converter, etc. Available in three lengths (1, 3, 5m).

Туре	CB-5S	CB-3S	CB-1S
Length [m]	5	3	1



Adapter for Keypad panel [CBAD-CP]


This is a relay adapter to remotely control the unit with the standard keypad or remote keypad (optional).


This adapter is a bundled product consisting of a relay connector for the inverter and a rear mounting adapter for the panel surface.

*Cannot be installed in Ethernet built-in type.

Mounting adapter [OPC-CP-ADP]

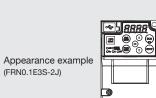
TT L.

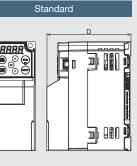
61.6 8.3 36.1

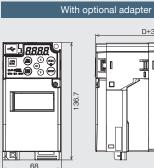
*Cannot be installed in Ethernet built-in type.

f	

[Unit : mm]


Supported option cards


This adapter is required when installing the following options.


	Name	Туре
	Digital I/O interface card	OPC-DIO
I/O interface	Analog interface card	OPC-AIO
	Relay output interface card	OPC-CP-RY
	Multiprotocol Ethernet communication card	OPC-CP-ETM
	ProfiBus-DP communication card	OPC-PDP3
Communi- cation	DeviceNet communication card	OPC-DEV
	CANopen communication card	OPC-COP2
	CC-Link communication card	OPC-CCL

Options

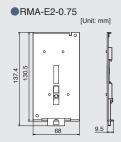
Depth (D) dimension when the optional adapter is mounted

Basic type

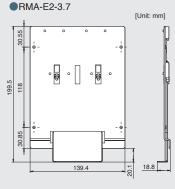
3-phase 200V series					
Time	Standard	With optional adapter			
Туре	D [mm]	D+36.4 [mm]			
FRN0001E3S-2G		101.1			
FRN0002E3S-2G	98	134.4			
FRN0004E3S-2G	113	149.4			
FRN0006E3S-2G	145	181.4			
FRN0010E3S-2G					
FRN0012E3S-2G	156	192.4			
FRN0020E3S-2G					
FRN0030E3S-2G	171	207.4			
FRN0040E3S-2G	171	207.4			
FRN0056E3S-2G					
FRN0069E3S-2G	203	239.4			
FRN0088E3S-2G	203	239.4			
FRN0115E3S-2G					

3-phase 400V series						
Туре	Standard	With optional adapter				
туре	D [mm]	D+36.4 [mm]				
FRN0002E3S-4G	132	168.4				
FRN0004E3S-4G						
FRN0006E3S-4G	156	192.4				
FRN0007E3S-4G	100	192.4				
FRN0012E3S-4G						
FRN0022E3S-4G	171	207.4				
FRN0029E3S-4G	171	207.4				
FRN0037E3S-4G						
FRN0044E3S-4G	203	239.4				
FRN0059E3S-4G	203	239.4				
FRN0072E3S-4G						

1-phase 200V series					
Туре	Standard	With optional adapter			
туре	D [mm]	D+36.4 [mm]			
FRN0001E3S-7G	98	134.4			
FRN0002E3S-7G	96	134.4			
FRN0004E3S-7G	120	156.4			
FRN0006E3S-7G	165	201.4			
FRN0010E3S-7G	166	202.4			
FRN0012E3S-7G	156	192.4			

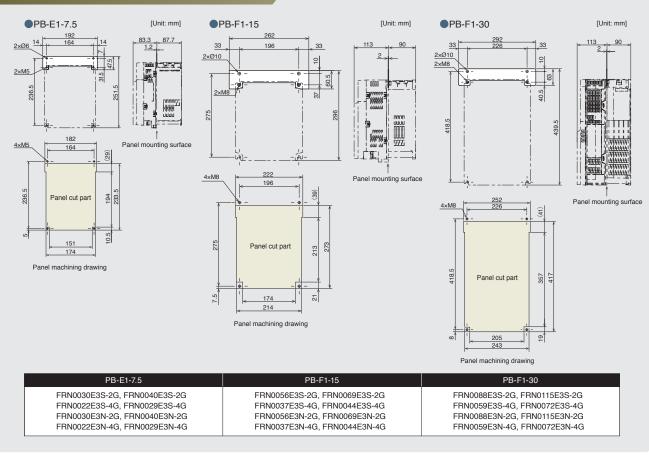

EMC filter built-in type

3-phase 400V series					
Туре	Standard	With optional adapter			
туре	D [mm]	D+36.4 [mm]			
FRN0002E3E-4G	132	168.4			
FRN0004E3E-4G					
FRN0006E3E-4G	150	100.4			
FRN0007E3E-4G	156	192.4			
FRN0012E3E-4G					
FRN0022E3E-4G	171	207.4			
FRN0029E3E-4G	171	207.4			
FRN0037E3E-4G					
FRN0044E3E-4G		000.4			
FRN0059E3E-4G	203	239.4			
FRN0072E3E-4G					


1-phase 200V series						
Туре	Standard	With optional adapter				
туре	D [mm]	D+36.4 [mm]				
FRN0001E3S-7G	98	134.4				
FRN0002E3S-7G	90	154.4				
FRN0003E3E-7G	120	156.4				
FRN0005E3E-7G	165	201.4				
FRN0008E3E-7G	166	202.4				
FRN0011E3E-7G	156	192.4				

DIN rail mounting bases (RMA-E2-

•RMA-E2-2.2 [Unit: mm]

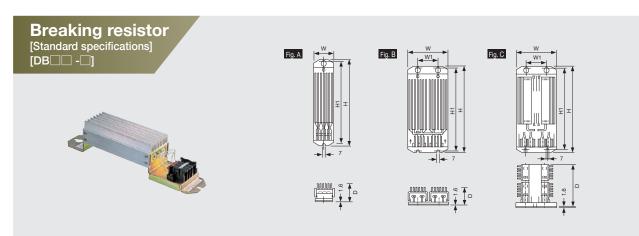


This is an option for mounting the inverter on a DIN rail (35mm width).

		RMA-E2-0.75	RMA-E2-2.2	RMA-E2-3.7
-	3-phase 200 V series	FRN0001E3S-2G to FRN0006E3S-2G	FRN0010E3S-2G to FRN0012E3S-2G	FRN0020E3S-2G
Basic type (E3S)	3-phase 400 V series	-	FRN0002E3S-4G to FRN0007E3S-4G	FRN0012E3S-4G
(200)	1-phase 200 V series	FRN0001E3S-7G to FRN0006E3S-7G	FRN0010E3S-7G	FRN0012E3S-7G
EMC filter	3-phase 400 V series	-	FRN0002E3E-4G to FRN0004E3E-4G	FRN0006E3E-4G to FRN0012E3E-4G
built-in type (E3E)	1-phase 200 V series	FRN0001E3E-7G to FRN0003E3E-7G	FRN0005E3E-7G	FRN0008E3E-7G to FRN0011E3E-7G
	3-phase 200 V series	FRN0001E3N-2G to FRN0006E3N-2G	FRN0010E3N-2G to FRN0012E3N-2G	FRN0020E3N-2G
Ethernet built-in type (E3N)	3-phase 400 V series	-	FRN0002E3N-4G to FRN0007E3N-4G	FRN0012E3N-4G
Duit in type (LON)	1-phase 200 V series	FRN0001E3N-7G to FRN0006E3N-7G	FRN0010E3N-7G	FRN0012E3N-7G

External cooling fan attachment

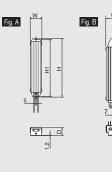
This attachment is used to move the inverter's cooling fins to a position that is outside the board.



Options

Built-in option card

Item		· · · · · · · · · · · · · · · · · · ·
Adapter mounting type op By using the adapter for m		DPC-CP-ADP), one of the following options can be mounted.
Digital I/O interface card	OPC-DIO	Provides additional digital I/O. • Frequency settings can be made using binary (8, 12 bit) and BCD codes. • Monitoring is available using binary codes (8 bit). • Capable of extending general-purpose input terminals. (I1 to I13) • Capable of extending general-purpose output terminals. (01 to 08)
Analog interface card	OPC-AIO	Enables torque limit value, frequency setting, and ratio tuning setting via analog input. Enables monitoring of inverter output frequency, current, torque, etc. in analog quantities. • Analog input • Analog voltage input: 1 (0 to ±10 V) Analog current input: 1 (4 to 20 mA or 0 to 20 mA)
Relay output interface card	OPC-CP-RY	Supports up to three additional relay outputs (1C contact). • 250 V AC 0.3 A cos ϕ = 0.3 or 48 V DC 0.5 A (resistive load)
Multi-protocol Ethernet communication card	OPC-CP-ETM	Connects to the master device via Ethernet communication (EtherNet/IP, PROFINET, Modbus TCP), enabling setting of operation commands and frequency commands, and setting and checking of function codes. Connector type: RJ-45 shielded Ethernet cable: CAT5e or higher UTP or STP cable Physical layer type: IEEE 802.3 Communication speed: 10Mbps/100Mbps (automatic detection)
PROFIBUS-DP communication card	OPC-PDP3	Operation and frequency commands can be set from PROFIBUS-DP master, enabling monitoring of operation status as changing/checking of all function codes. • Communication speed: 9.6 kbps to 12 Mbps • Transmission distance: Up to 1,200m • Connector: 2 × 6-pole terminal block
DeviceNet communication card	OPC-DEV	Operation and frequency commands can be set from DeviceNet master, enabling monitoring of operation status and changing/checking of all function codes • No. of connected nodes: Up to 64 (including master) • MAC ID: 0 to 63 • Insulation: 500 VDC (photocoupler insulation)
CANopen communication card	OPC-COP2	Operation and frequency commands can be set from CANopen master (PC, PLC, etc.), as well as setting/checking of all function codes. • No. of connected nodes: Up to 127 • Communication speed: 20 kbps, 50 kbps, 125 kbps, 250 kbps, 500 kbps, 800 kbps, 1 Mbps • Transmission distance: Up to 2,500 m
CC-Link communication card	OPC-CCL	When connecting to a CC-Link master unit, it supports a communication speed of up to 10 Mbps and a total length of up 1,200 m. • No. of connected units: 42 • Communication method: CC-Link Ver1.10 and Ver2.0 • Communication speed: 156 kbps or faster
Terminal block type option The terminal block board o		be removed and one of the following option cards can be installed.
PG interface card	OPC-CP-PG	Comes with a two-system pulse input circuit, enabling speed control, simple position control, and synchronous operati • Application: Speed control (vector control with sensor) pulse train input • Specifications: 20 to 3600 P/R A, B, Z phases (incremental) Open collector/complementary system • PG power supply: +5 Vdc ±10% / 200 mA or less
	OPC-CP-PG3	Comes with a two-system pulse input circuit, enabling speed control, simple position control, and synchronous operati Application: Speed control (vector control with sensor) pulse train input Specifications: 20 to 3600 P/R A, B, Z phases (incremental) Open collector/complementary system PG power supply: +12 Vdc ± 10% / 80 mA or less or +15 Vdc ±10% / 60mA or less
RS485 communication card	OPC-CP-RS	By replacing the standard terminal block of Ace, it can be expanded to two RJ-45 connectors for RS485 communication allowing for easy multi-drop connection.
Control terminal block option (screw type terminal block)	OPC-E2-TB1	Capable of being changed to stick terminal/screw terminal. Excluding EN terminal EN1/EN2, relay output 30 A/B/C. • Digital input FWD, REV, X1 to X5 • Digital output Y1, Y2 • Analog input 11 Analog I/O common 12 Setting voltage input 0 to ±10 V DC 13 Variable resistor power supply C1 current input 4 (0) to 20 mA DC or PTC thermistor input 0 to +10 V DC • Analog output FM 1 current output 4 (0) to 20 mA DC, voltage output 0 to ±10 V DC, or pulse output FM 2 current output 4 (0) to 20 mA DC, or voltage output FM 2 current output 4 (0) to 20 mA DC, or voltage output FM 2 current output 4 (0) to 20 mA DC, or voltage output



Vallaga	Time	pe Fig		Dimensions [mm]				
Voltage	Туре	Fig	W	W1	н	H1	D	weight [kg]
	DB0.75-2		68		310	295	67	1.3
	DB2.2-2	A	80	-	345	332	94	2
	DB3.7-2		80		345	332	94	2
0	e DB5.5-2 DB7.5-2	в	146	90	450	430	67.5	4.5
3-phase 200V		Б	160	90	390	370	90	5
2001	DB11-2		142	74	430	415	160	6.9
	DB15-2		142	74	430	415	160	6.9
	DB18.5-2	С	142	74	510	495	160	8.7
	DB22-2		142	74	510	495	160	8.7

Voltage Type		Fig	Dimensions [mm]					Approx.
voltage	Туре	FIY	w	W1	н	H1	D	weight [kg]
	DB0.75-4		68		310	295	67	1.3
	DB2.2-4	A	68	-	470	455	67	2
	DB3.7-4		68		470	455	67	1.7
3-phase	DB5.5-4	в	146	74	470	455	67	4.5
400V	DB7.5-4		146	74	510	495	67	5
	DB11-4		142	74	430	415	160	6.9
	DB15-4	с	142	74	430	415	160	6.9
	DB18.5-4		142	74	510	495	160	8.7
	DB22-4		142	74	510	495	160	8.7

Breaking resistor [10%EDSpec.] [DB - -C]

Туре

DB0.75-2C/4C

DB2.2-2C/4C

DB3.7-2C/4C

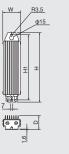
DB5.5-2C/4C

DB7.5-2C/4C

DB11-2C/4C

DB15-2C/4C

DB22-2C/4C


Fig

А

в

С

D

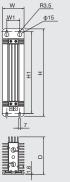
W

43

67

67

80


80

80

80

180

Fig. C

Dime

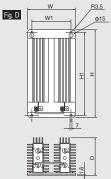
W1

_

_

_

-


-

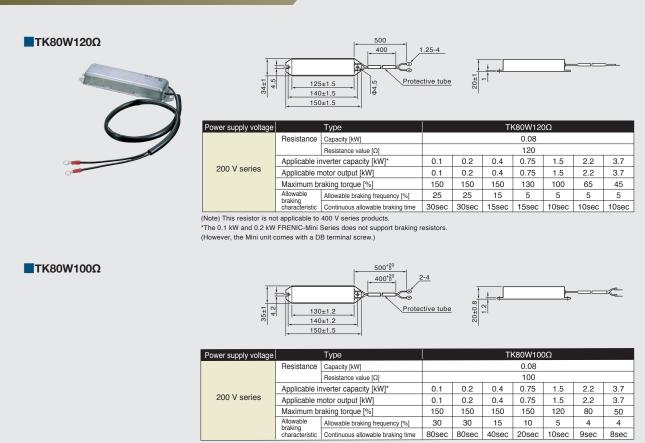
50

50

144

400

1		<u> </u>
ons [mm]		
Н	H1	D
221	215	30.5
188	172	55
328	312	55
378	362	78
418	402	78
460	440	140
580	560	140


383

Options

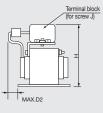
145

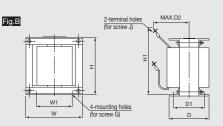
Braking resistor [Compact type]

 $(TK80W120\Omega, TK80W100\Omega)$

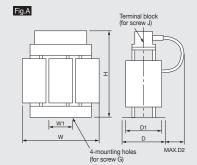
(Note) This resistor is not applicable to 400 V series products.

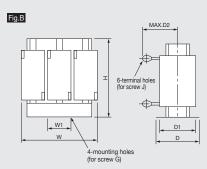

*The 0.1 kW and 0.2 kW FRENIC-Mini Series does not support braking resistors.


(However, the Mini unit comes with a DB terminal screw.)



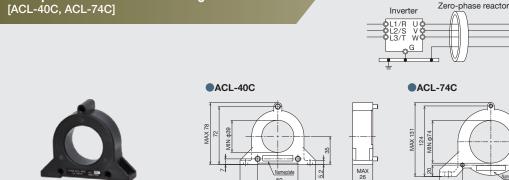
DC Reactor




ND FRN0002E34G FRN0004E34G FRN000FE34G FRN007E34G FRN002E34G FRN002F34G FRN0059E34G FRN0059E34G FRN0072E34G	HD 	HND 	HHD FRN0002E3 -4G - - FRN0006E3 -4G - - FRN0007E3 -4G - - FRN0012E3 -4G FRN002E3 -4G FRN002E3 -4G FRN002E3 -4G FRN0037E3 -4G FRN0072E3 -4G FRN0072E3 -4G FRN0072E3 -4G FRN001E3 -2G FRN0001E3 -2G FRN0004E3 -2G FRN0004E3 -2G FRN0004E3 -2G FRN0004E3 -2G	Reactor Type DCR4-0.4 DCR4-0.75 DCR4-1.5 DCR4-3.7 DCR4-5.5 DCR4-1.5 DCR4-1.5 DCR4-5.5 DCR4-15 DCR4-5.5 DCR4-15 DCR4-15 DCR4-3.7 DCR2-0.2 DCR2-0.4 DCR2-0.75	Fig A B	W 66 86 1111 146 <u>152</u> 171	W1 56 71 95 124 90 110	90 100 120 157 150	D1 72 80 96 115 110	D2 15 20 15 20 24 15 25 100 100	G M4 (5.2×8) M5 (6×9) M6 (7×11)	H 94 110 130 168 171 130	H1	Ы М4 М5 М6
	FRN0004E3 -4G 	FRN0004E3 -4G 	FRN0004E3 -4G 	DCR4-0.75 DCR4-1.5 DCR4-1.5 DCR4-2.2 DCR4-3.7 DCR4-5.5 DCR4-7.5 DCR4-15 DCR4-15 DCR4-15 DCR4-18.5 DCR4-30B DCR4-30B DCR4-37B DCR4-37B DCR2-0.2 DCR2-0.4		86 111 146 152	71 95 124 90	100 120 157	80 96 115	20 15 20 24 15 25 100	M5 (6×9) M6 (7×11)	110 130 168 171		M5
	FRN0004E3 -4G 	FRN0004E3 -4G 		DCR4-1.5 DCR4-2.2 DCR4-3.7 DCR4-5.5 DCR4-7.5 DCR4-11 DCR4-15 DCR4-18.5 DCR4-18.5 DCR4-30B DCR4-30B DCR4-37B DCR4-37B DCR2-0.2 DCR2-0.4		86 111 146 152	71 95 124 90	100 120 157	80 96 115	15 20 24 15 25 100	M5 (6×9) M6 (7×11)	110 130 168 171		M5
FRN0006E3 -4G FRN007E3 -4G - FRN0012E3 -4G - FRN0022E3 -4G FRN0029E3 -4G FRN0029E3 -4G FRN0037E3 -4G FRN004E3 -4G			FRN0007E3 4G 	DCR4-2.2 DCR4-3.7 DCR4-5.5 DCR4-7.5 DCR4-15 DCR4-15 DCR4-18.5 DCR4-30B DCR4-30B DCR4-30B DCR4-37B DCR2-0.2 DCR2-0.4		86 111 146 152	71 95 124 90	100 120 157	80 96 115	15 20 24 15 25 100	M5 (6×9) M6 (7×11)	110 130 168 171		M5
FRN0006E3 -4G FRN007E3 -4G - FRN0012E3 -4G - FRN0022E3 -4G FRN0029E3 -4G FRN0029E3 -4G FRN0037E3 -4G FRN004E3 -4G	FRN0007E34G 	FRN0007E3 4G 	FRN0007E3 4G 	DCR4-2.2 DCR4-3.7 DCR4-5.5 DCR4-7.5 DCR4-15 DCR4-15 DCR4-18.5 DCR4-30B DCR4-30B DCR4-30B DCR4-37B DCR2-0.2 DCR2-0.4		111 146 152	95 124 90	120	96 115	20 24 15 25 100	M6(7×11)	130 168 171		M5
FRN007E34G 	FRN0007E34G 	FRN0007E3 4G 		DCR4-3.7 DCR4-5.5 DCR4-7.5 DCR4-11 DCR4-15 DCR4-18.5 DCR4-22A DCR4-30B DCR4-37B DCR4-37B DCR2-0.2 DCR2-0.4		111 146 152	95 124 90	120	96 115	20 24 15 25 100	M6(7×11)	130 168 171		M5
			FRN0022E3_4G FRN0029E3_4G FRN0037E3_4G FRN004E3_4G FRN0059E3_4G FRN0072E3_4G 	DCR4-5.5 DCR4-7.5 DCR4-7.5 DCR4-11 DCR4-15 DCR4-18.5 DCR4-30B DCR4-30B DCR4-37B DCR2-0.2 DCR2-0.4		111 146 152	95 124 90	120	96 115	24 15 25 100	M6(7×11)	130 168 171		
FRN0022E34G FRN0029E34G FRN0037E34G FRN0044E34G FRN0059E34G	FRN0022E34G FRN0029E34G FRN0037E34G FRN0044E34G FRN0059E34G	FRN0022E34G FRN0029E34G FRN0037E34G FRN0044E34G FRN0059E34G FRN0072E34G 	FRN0022E3_4G FRN0029E3_4G FRN0037E3_4G FRN004E3_4G FRN0059E3_4G FRN0072E3_4G 	DCR4-5.5 DCR4-7.5 DCR4-7.5 DCR4-11 DCR4-15 DCR4-18.5 DCR4-30B DCR4-30B DCR4-37B DCR2-0.2 DCR2-0.4		146	124 90	120	96 115	24 15 25 100	M6(7×11)	130 168 171		
FRN0022E34G FRN0029E34G FRN0037E34G FRN0044E34G FRN0059E34G	FRN0022E34G FRN0029E34G FRN0037E34G FRN0044E34G FRN0059E34G	FRN0022E34G FRN0029E34G FRN0037E34G FRN0044E34G FRN0059E34G FRN0072E34G 	FRN0029E3 -4G FRN0037E3 -4G FRN004E3 -4G FRN0059E3 -4G FRN0072E3 -4G FRN001E3 -2G FRN0002E3 -2G FRN0004E3 -2G	DCR4-7.5 DCR4-11 DCR4-15 DCR4-18.5 DCR4-22A DCR4-30B DCR4-30B DCR4-37B DCR2-0.2 DCR2-0.4		146	124 90	120	96 115	15 25 100		168 171		
FRN0029E3 -4G FRN0037E3 -4G FRN0044E3 -4G FRN0059E3 -4G	FRN0029E3 -4G FRN0037E3 -4G FRN0044E3 -4G FRN0059E3 -4G	FRN0029E3 4G FRN0037E3 4G FRN004E3 4G FRN0059E3 4G FRN0072E3 4G FRN001E3 26 FRN001E3 26 FRN0002E3 26 FRN0004E3 26	FRN0037E3 4G FRN0044E3 4G FRN0059E3 4G FRN0072E3 4G FRN001E3 26 FRN001E3 26 FRN002E3 26 FRN0004E3 26	DCR4-11 DCR4-15 DCR4-18.5 DCR4-22A DCR4-30B DCR4-37B DCR2-0.2 DCR2-0.4	B	146	124 90	157	115	15 25 100		168 171		
FRN0029E3 -4G FRN0037E3 -4G FRN0044E3 -4G FRN0059E3 -4G	FRN0037E34G FRN0044E34G FRN0059E34G	FRN0037E3_4G FRN0044E3_4G FRN0059E3_4G FRN0072E3_4G 	FRN0044E34G FRN0059E34G FRN0072E34G - - FRN0001E32G FRN0002E32G FRN0004E32G	DCR4-15 DCR4-18.5 DCR4-22A DCR4-30B DCR4-37B DCR2-0.2 DCR2-0.4	B	152	90	157	115	15 25 100		168 171		
FRN0037E34G FRN0044E34G FRN0059E34G	FRN0044E34G FRN0059E34G	FRN0044E34G FRN0059E34G FRN0072E34G FRN0001E32G FRN0002E32G FRN0004E32G	FRN0059E3 -4G FRN0072E3 -4G - - FRN0001E3 -2G FRN0002E3 -2G FRN0004E3 -2G	DCR4-18.5 DCR4-22A DCR4-30B DCR4-37B DCR2-0.2 DCR2-0.4	B	152	90	157	115	25 100		171		M6
FRN0044E34G FRN0059E34G	FRN0059E3 -4G	FRN0059E3 -4G FRN0072E3 -4G - FRN0001E3 -2G FRN0002E3 -2G FRN0004E3 -2G	FRN0072E34G 	DCR4-22A DCR4-30B DCR4-37B DCR2-0.2 DCR2-0.4	В	152	90	157	115	100	M6 (φ8)			M6
FRN0059E3 -4G		FRN0072E34G 	 FRN0001E32G FRN0002E32G FRN0004E32G	DCR4-30B DCR4-37B DCR2-0.2 DCR2-0.4	В	-				100	M6 (φ8)			
	FRN0072E3L4G	 FRN0001E32G FRN0002E32G FRN0004E32G	_ FRN0001E32G FRN0002E32G FRN0004E32G	DCR4-37B DCR2-0.2 DCR2-0.4	в	-					M6(φ8)	130		
		FRN0002E32G FRN0004E32G	FRN0002E32G FRN0004E32G	DCR2-0.2 DCR2-0.4	-	1/1	110	150	110	100			190	M8
-		FRN0002E32G FRN0004E32G	FRN0002E32G FRN0004E32G	DCR2-0.4								150	200	
-		FRN0002E32G FRN0004E32G	FRN0004E3 -2G				56	90	72	5				
-		FRN0004E3 -2G			-	1				15	-			
-				DCR2-0.75		66				15	M4(5.2×8)) 94		M4
-		FRINUUU0E32G	_	DCR2-0.75	-					20				
_			FRN0010E3 -2G							20				1014
			FRN0012E3 -2G	DCR2-2.2	{ }	-				10		$\left - \right $		
-		FRN0012E32G	-	DON2-2.2	-	86	71				M5(6×9)	6×9) 110		
	_	-	FRN0020E3 -2G	DCR2-3.7	A		· ·		80	20				
-		FRN0020E3 -2G	FRN0030E3 -2G	DCR2-5.5				100		20	MO(7 44)	130 137 180		M5
-		FRN0030E3 -2G	FRN0040E3 -2G	DCR2-7.5	1	111	95			23				
		FRN0040E3 -2G	FRN0056E3 -2G	DCR2-11						24				M6
		FRN0056E32G	FRN0069E3 -2G	DCR2-15	1					15	M6(7×11)			
		FRN0069E3 -2G	FRN0088E3 -2G	DCR2-18.5	1	146	124	120	96	0.5	-			M8
		FRN0088E3 -2G	FRN0115E3 -2G	DCR2-22A	1					25				
		FRN0115E3 -2G	_	DCR2-30B	В	152	90	156	116	115	M6(φ8)	130	190	M10
		_	FRN0001E3S-7G	DCR2-0.2						5				
		FRN0001E3S-7G	FRN0002E3S-7G	DCR2-0.4						15]			
	_	FRN0002E3S-7G	FRN0004E3S-7G	DCR2-0.75	66	56	90	72	20	M4 (5.2×8)	94			
		FRN0004E3S-7G	-						20					
		-	FRN0006E3S-7G	DCR2-1.5	Α					10			-	M4
		FRN0006E3S-7G	-	DCR2-2.2	DCR2-2.2									
_		-	FRN0010E3S-7G	DCB2-3 7		86	71	100	80	20	M5(6×9)	110		
		FRN0010E3S-7G	FRN0012E3S-7G					.00		-	1410 (0×9)			
		FRN0012E3S-7G	-	DCR2-5.5										
		erter type indicates the symbol for each type.	FRN0056E32G FRN069E32G FRN069E32G FRN0115E32G FRN0115E32G - - FRN0001E3S-7G FRN000E3S-7G FRN0006E3S-7G - FRN0006E3S-7G FRN0010E3S-7G FRN0012E3S-7G	- - FRN005683-2G FRN0069E33-2G FRN0069E33-2G FRN0088E33-2G FRN0115E33-2G FRN0115E33-2G - - FRN001E3S-7G FRN001E3S-7G FRN0002E3S-7G FRN004E3S-7G FRN0004E3S-7G - FRN006E3S-7G - - FRN001E3S-7G FRN0012E3S-7G -	- - FRN005683-2G FRN006983-2G DCR2-15.5 FRN006983-2G FRN008883-2G DCR2-18.5 FRN008883-2G DCR2-22A FRN0115E3-2G - DCR2-30B DCR2-30B - FRN001E3S-7G DCR2-0.2 FRN001E3S-7G FRN0001E3S-7G DCR2-0.2 FRN0001E3S-7G FRN0002E3S-7G DCR2-0.2 FRN0002E3S-7G FRN0004E3S-7G DCR2-0.75 FRN0004E3S-7G - DCR2-0.75 FRN0006E3S-7G - DCR2-0.75 FRN0001E3S-7G - DCR2-0.75 FRN0010E3S-7G - DCR2-0.75 FRN0010E3S-7G - DCR2-0.75 FRN0010E3S-7G - DCR2-0.75 FRN0010E3S-7G <td< td=""><td>- - FRN0056E32G FRN0069E32G DCR2-15 FRN0069E32G FRN0088E32G DCR2-18.5 FRN0115E32G - DCR2-22A FRN0115E32G - DCR2-30B B - FRN001E3S-7G DCR2-0.2 FRN001E3S-7G DCR2-0.2 FRN001E3S-7G FRN0001E3S-7G FRN000423S-7G DCR2-0.4 FRN000E3S-7G FRN000423S-7G DCR2-0.75 DCR2-0.75 FRN0006E3S-7G - DCR2-1.5 DCR2-2.2 - FRN0006E3S-7G DCR2-2.2 PCR2-2.2 - FRN0010E3S-7G DCR2-3.7 DCR2-3.7 FRN0010E3S-7G FRN0012E3S-7G DCR2-3.7 DCR2-3.7 FRN0012E3S-7G - DCR2-5.5 DCR2-5.5</td><td>- - FRN005683-2G FRN006923-2G DCR2-15 146 FRN015E3-2G FRN0115E3-2G DCR2-28 146 FRN0115E3-2G - DCR2-30B B 152 FRN001E3S-7G FRN0001E3S-7G DCR2-0.2 FRN0001E3S-7G DCR2-0.7 FRN001E3S-7G FRN0004E3S-7G DCR2-0.7 DCR2-0.7 66 FRN0004E3S-7G FRN0004E3S-7G DCR2-0.7 A FRN0005E3S-7G - DCR2-0.7 A FRN0006E3S-7G - DCR2-0.7 A FRN0006E3S-7G - DCR2-0.75 A FRN0006E3S-7G - DCR2-0.75 A FRN0010E3S-7G - DCR2-0.75 A FRN0010E3S-7G - DCR2-0.75 A FRN0010E3S-7G - DCR2-0.75 A FRN0010E3S-7G - DCR2-3.7 A FRN0010E3S-7G - DCR2-3.7 A FRN0012E3S-7G - DCR2-5.5 B6 </td><td>- - FRN005683-2G FRN008883-2G DCR2-15 146 124 FRN008853-2G FRN011583-2G DCR2-18.5 146 124 FRN011583-2G - DCR2-30B B 152 90 - FRN001E3S-7G DCR2-0.2 FRN001E3S-7G DCR2-0.2 66 56 FRN0002E3S-7G FRN0004E3S-7G DCR2-0.7 DCR2-0.7 0CR2-0.7 66 56 FRN0006E3S-7G - DCR2-2.2 DCR2-2.2 66 56 FRN000E3S-7G - DCR2-0.75 DCR2-0.75 DCR2-0.75 66 56 FRN00062SS-7G - DCR2-0.75 DCR2-0.75 DCR2-0.75 4 - - FRN00062SS-7G DCR2-0.75 DCR2-0.75 4 66 56 FRN0006E3S-7G - DCR2-0.75 DCR2-0.75 4 66 56 FRN0010E3S-7G - DCR2-0.75 DCR2-0.75 4 66 56 FRN0010E3S-7G - DCR2-0.75</td><td>FRN0056E32G FRN0069E32G DCR2-15 146 124 120 FRN008E32G FRN0115E32G DCR2-18.5 DCR2-204 146 124 120 FRN015E32G FRN0115E32G DCR2-30B B 152 90 156 FRN001E3S-7G FRN0001E3S-7G DCR2-0.2 FRN0001E3S-7G DCR2-0.4 FRN0002E3S-7G DCR2-0.75 FRN0004E3S-7G DCR2-0.75 FRN0004E3S-7G DCR2-0.75 FRN0004E3S-7G DCR2-0.75 FRN004E3S-7G DCR2-0.75 FRN004E3S-7G DCR2-0.75 FRN004E3S-7G DCR2-0.75 FRN004E3S-7G DCR2-0.75 FRN004E3S-7G DCR2-0.75 FRN001E3S-7G DCR2-0.75 FRN001E3S-7G FRN001E3S-7G DCR2-0.75 FRN001E3S-7G FRN001</td><td>- - FRN0056E32G FRN008E32G DCR2-15 146 124 120 96 - FRN008E32G FRN0115E32G DCR2-20A B 152 90 156 116 - FRN001E3S-7G - DCR2-0.4 B 152 90 156 116 - FRN001E3S-7G DCR2-0.4 FRN0001E3S-7G DCR2-0.75 66 56 90 72 FRN0004E3S-7G - DCR2-0.75 DCR2-0.75 A A 66 56 90 72 FRN0004E3S-7G - DCR2-0.75 DCR2-0.75 A A 66 56 90 72 FRN0004E3S-7G - DCR2-0.75 DCR2-0.75 A A 66 56 90 72 FRN0006E3S-7G - DCR2-0.75 DCR2-0.75 A A 86 71 100 80 FRN0010E3S-7G - DCR2-3.7 DCR2-3.7 A 86 71 <</td><td>- - FRN0056E3C-2G FRN0069E3C-2G DCR2-15 146 124 120 96 15 FRN0069E3C-2G FRN0115E3C-2G DCR2-18.5 DCR2-22A DCR2-20A 146 124 120 96 15 FRN0115E3C-2G - DCR2-30B B 152 90 156 116 115 - FRN001E3S-7G DCR2-0.2 FRN001E3S-7G DCR2-0.2 66 56 90 72 15 FRN000E3S-7G FRN0004E3S-7G DCR2-0.75 DCR2-0.75 DCR2-0.75 66 56 90 72 20 - - FRN00062SS-7G DCR2-0.75 DCR2-0.75 4 66 56 90 72 20 - - FRN0006E3S-7G - DCR2-0.75 4 66 71 10 FRN0010E3S-7G - - FRN0010E3S-7G - DCR2-3.7 46 71 10 80 20 - FRN0010E3S-7G</td><td>FRN0056E32G FRN0069E32G DCR2-15 146 124 120 96 15 16 115 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 115 M6(7×11) FRN008E32G FRN0015E32G DCR2-28A DCR2-28A DCR2-28A 16 115 M6(7×11) FRN0115E32G - DCR2-30B B 152 90 156 116 115 M6(6(8) - FRN001E3S-7G DCR2-0.2 FRN002E3S-7G DCR2-0.7 DCR2-0.7 10</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>FRN0056E32G FRN0069E32G DCR2-15 146 124 120 96 15 180 FRN0056E32G FRN0088E32G DCR2-18.5 DCR2-22A 146 124 120 96 15 180 FRN0115E32G - DCR2-30B B 152 90 156 116 115 M6(7×11) 180 - FRN0115E32G - DCR2-30B B 152 90 156 116 115 M6(6\phi) 130 190 - FRN001E3S-7G DCR2-0.2 FRN0002E3S-7G DCR2-0.7 - 15 10 10 100 10 100 10 10 10 - - - 10 - - - - - 10 -</td></td<>	- - FRN0056E32G FRN0069E32G DCR2-15 FRN0069E32G FRN0088E32G DCR2-18.5 FRN0115E32G - DCR2-22A FRN0115E32G - DCR2-30B B - FRN001E3S-7G DCR2-0.2 FRN001E3S-7G DCR2-0.2 FRN001E3S-7G FRN0001E3S-7G FRN000423S-7G DCR2-0.4 FRN000E3S-7G FRN000423S-7G DCR2-0.75 DCR2-0.75 FRN0006E3S-7G - DCR2-1.5 DCR2-2.2 - FRN0006E3S-7G DCR2-2.2 PCR2-2.2 - FRN0010E3S-7G DCR2-3.7 DCR2-3.7 FRN0010E3S-7G FRN0012E3S-7G DCR2-3.7 DCR2-3.7 FRN0012E3S-7G - DCR2-5.5 DCR2-5.5	- - FRN005683-2G FRN006923-2G DCR2-15 146 FRN015E3-2G FRN0115E3-2G DCR2-28 146 FRN0115E3-2G - DCR2-30B B 152 FRN001E3S-7G FRN0001E3S-7G DCR2-0.2 FRN0001E3S-7G DCR2-0.7 FRN001E3S-7G FRN0004E3S-7G DCR2-0.7 DCR2-0.7 66 FRN0004E3S-7G FRN0004E3S-7G DCR2-0.7 A FRN0005E3S-7G - DCR2-0.7 A FRN0006E3S-7G - DCR2-0.7 A FRN0006E3S-7G - DCR2-0.75 A FRN0006E3S-7G - DCR2-0.75 A FRN0010E3S-7G - DCR2-0.75 A FRN0010E3S-7G - DCR2-0.75 A FRN0010E3S-7G - DCR2-0.75 A FRN0010E3S-7G - DCR2-3.7 A FRN0010E3S-7G - DCR2-3.7 A FRN0012E3S-7G - DCR2-5.5 B6	- - FRN005683-2G FRN008883-2G DCR2-15 146 124 FRN008853-2G FRN011583-2G DCR2-18.5 146 124 FRN011583-2G - DCR2-30B B 152 90 - FRN001E3S-7G DCR2-0.2 FRN001E3S-7G DCR2-0.2 66 56 FRN0002E3S-7G FRN0004E3S-7G DCR2-0.7 DCR2-0.7 0CR2-0.7 66 56 FRN0006E3S-7G - DCR2-2.2 DCR2-2.2 66 56 FRN000E3S-7G - DCR2-0.75 DCR2-0.75 DCR2-0.75 66 56 FRN00062SS-7G - DCR2-0.75 DCR2-0.75 DCR2-0.75 4 - - FRN00062SS-7G DCR2-0.75 DCR2-0.75 4 66 56 FRN0006E3S-7G - DCR2-0.75 DCR2-0.75 4 66 56 FRN0010E3S-7G - DCR2-0.75 DCR2-0.75 4 66 56 FRN0010E3S-7G - DCR2-0.75	FRN0056E32G FRN0069E32G DCR2-15 146 124 120 FRN008E32G FRN0115E32G DCR2-18.5 DCR2-204 146 124 120 FRN015E32G FRN0115E32G DCR2-30B B 152 90 156 FRN001E3S-7G FRN0001E3S-7G DCR2-0.2 FRN0001E3S-7G DCR2-0.4 FRN0002E3S-7G DCR2-0.75 FRN0004E3S-7G DCR2-0.75 FRN0004E3S-7G DCR2-0.75 FRN0004E3S-7G DCR2-0.75 FRN004E3S-7G DCR2-0.75 FRN004E3S-7G DCR2-0.75 FRN004E3S-7G DCR2-0.75 FRN004E3S-7G DCR2-0.75 FRN004E3S-7G DCR2-0.75 FRN001E3S-7G DCR2-0.75 FRN001E3S-7G FRN001E3S-7G DCR2-0.75 FRN001E3S-7G FRN001	- - FRN0056E32G FRN008E32G DCR2-15 146 124 120 96 - FRN008E32G FRN0115E32G DCR2-20A B 152 90 156 116 - FRN001E3S-7G - DCR2-0.4 B 152 90 156 116 - FRN001E3S-7G DCR2-0.4 FRN0001E3S-7G DCR2-0.75 66 56 90 72 FRN0004E3S-7G - DCR2-0.75 DCR2-0.75 A A 66 56 90 72 FRN0004E3S-7G - DCR2-0.75 DCR2-0.75 A A 66 56 90 72 FRN0004E3S-7G - DCR2-0.75 DCR2-0.75 A A 66 56 90 72 FRN0006E3S-7G - DCR2-0.75 DCR2-0.75 A A 86 71 100 80 FRN0010E3S-7G - DCR2-3.7 DCR2-3.7 A 86 71 <	- - FRN0056E3C-2G FRN0069E3C-2G DCR2-15 146 124 120 96 15 FRN0069E3C-2G FRN0115E3C-2G DCR2-18.5 DCR2-22A DCR2-20A 146 124 120 96 15 FRN0115E3C-2G - DCR2-30B B 152 90 156 116 115 - FRN001E3S-7G DCR2-0.2 FRN001E3S-7G DCR2-0.2 66 56 90 72 15 FRN000E3S-7G FRN0004E3S-7G DCR2-0.75 DCR2-0.75 DCR2-0.75 66 56 90 72 20 - - FRN00062SS-7G DCR2-0.75 DCR2-0.75 4 66 56 90 72 20 - - FRN0006E3S-7G - DCR2-0.75 4 66 71 10 FRN0010E3S-7G - - FRN0010E3S-7G - DCR2-3.7 46 71 10 80 20 - FRN0010E3S-7G	FRN0056E32G FRN0069E32G DCR2-15 146 124 120 96 15 16 115 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 115 M6(7×11) FRN008E32G FRN0015E32G DCR2-28A DCR2-28A DCR2-28A 16 115 M6(7×11) FRN0115E32G - DCR2-30B B 152 90 156 116 115 M6(6(8) - FRN001E3S-7G DCR2-0.2 FRN002E3S-7G DCR2-0.7 DCR2-0.7 10	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	FRN0056E32G FRN0069E32G DCR2-15 146 124 120 96 15 180 FRN0056E32G FRN0088E32G DCR2-18.5 DCR2-22A 146 124 120 96 15 180 FRN0115E32G - DCR2-30B B 152 90 156 116 115 M6(7×11) 180 - FRN0115E32G - DCR2-30B B 152 90 156 116 115 M6(6\phi) 130 190 - FRN001E3S-7G DCR2-0.2 FRN0002E3S-7G DCR2-0.7 - 15 10 10 100 10 100 10 10 10 - - - 10 - - - - - 10 -

Options

AC Reactor



Voltage	Standard applicable	ble Inverter type						Dimensions [mm]								Approx weight
	wotor kW(HP)	ND	HD	HND	ННD	Туре		w	W1	D	D1	D2	G	н	J	[kg]
	0.4(1/2)	_	—	—	FRN0002E3 -4G	ACR4-0.75A		120	40	90	65					1.1
	0.75(1)	FRN0002E3 -4G	FRN0002E3 -4G	FRN0002E3 -4G	FRN0004E3 -4G	A0114-0.13A		120		30	00			85		
	1.1(1.5)	_	FRN0004E3[]-4G	FRN0004E3 -4G	_	ACR4-1.5A		125				106		05		1.9
	1.5(2)	FRN0004E34G	-	-	FRN0006E3 -4G					100	-		M5 (6×10)		M4	1.5
	2.2(3)	FRN0006E3 -4G	FRN0006E3 -4G	FRN0006E3 -4G	FRN0007E34G	ACR4-2.2A										2.2
	3.0(4)	FRN0007E3 -4G	FRN0007E34G	FRN0007E34G	_	ACR4-3.7A								95	M5 -	2.4
3-phase	3.7(5)	-	-	_	FRN0012E34G	AUR4-3.7A										2.4
	5.5(7.5)	FRN0012E3 -4G	FRN0012E3 -4G	FRN0012E3 -4G	FRN0022E34G	ACR4-5.5A				115						3.1
	7.5(10)	-	FRN0022E3 -4G	FRN0022E3 -4G	FRN0029E34G	ACR4-7.5A				115						3.7
	11(15)	FRN0022E34G	FRN0029E3 -4G	FRN0029E34G	FRN0037E34G	ACR4-11A				110				115 137	M6	4.3
	15(20)	FRN0029E3 -4G	FRN0037E3 -4G	FRN0037E3 -4G	FRN0044E34G	ACR4-15A		180			85					5.4
	18.5(25)	FRN0037E3 -4G	FRN0044E3 -4G	FRN0044E3 -4G	FRN0059E34G	ACR4-18.5A		100	60		90					5.7
	22(30)	FRN0044E3 -4G	FRN0059E3 -4G	FRN0059E34G	FRN0072E34G	ACR4-22A			00							5.9
	30(40)	FRN0059E3 -4G	FRN0072E3 -4G	FRN0072E3 -4G	_	ACR4-37		190		120				190	M8	12
	37(50)	FRN0072E3 -4G	-	-	-	AUR4-37		190		120					IVIO	12
	0.1(1/8)			—	FRN0001E32G								M5 (6×10)	115		
	0.2(1/4)			FRN0001E3 -2G	FRN0002E32G	ACR2-0.4A				90	65					1.4
	0.4(1/2)			FRN0002E3 -2G	FRN0004E32G											
	0.75(1)			FRN0004E3 -2G	FRN0006E32G	ACR2-0.75]	120	40			20			M4	1.9
	1.1(1.5)			FRN0006E3 -2G	-	ACR2-1.5A	A			100 7	75					
	1.5(2)			_	FRN0010E32G	ACR2-1.5A	A									2
	2.2(3)			FRN0010E32G	FRN0012E32G	ACR2-2.2A										
3-phase	3.0(4)			FRN0012E32G	_	ACR2-3.7A										0.4
200V	3.7(5)	-	-	_	FRN0020E32G	- ACR2-3.7A						25				2.4
	5.5(7.5)			FRN0020E3 -2G	FRN0030E32G	ACR2-5.5A	1	125		445	00	1				0.1
	7.5(10)			FRN0030E32G	FRN0040E32G	ACR2-7.5A					90			95	M5 M6	3.1
	11(15)			FRN0040E3 -2G	FRN0056E32G	ACR2-11A	1				100	106				3.7
	15(20)			FRN0056E3 -2G	FRN0069E32G	ACR2-15A]				4.8
	18.5(25)			FRN0069E32G	FRN0088E32G	ACR2-18.5A	В	180	60	110	85	100	M6(7×11)	115	IVI6	E 1
	22(30)			FRN0088E3 -2G	FRN0115E32G	ACR2-22A	1		00			109		1		5.1
	30(40)			FRN0115E3 -2G	-	ACR2-37	1	190	1	120	90	172]	190	M8	11
1-phase 200V	0.1(1/8)			_	FRN0001E3S-7G	ACR2-0.4A				90	65					- 4
	0.2(1/4)			FRN0001E3S-7G	FRN0002E3S-7G	- AGR2-0.4A				90		1				1.4
	0.4(1/2)			FRN0002E3S-7G	FRN0004E3S-7G	ACR2-0.75A	1	120			1	20	M5 (6×10)	115		1.9
	0.55(3/4)			FRN0004E3S-7G	_]									2
	0.75(1)	_	_	_	FRN0006E3S-7G	ACR2-1.5A	A		40	100	75				M4	2
Note1)	1.1(1.5)			FRN0006E3S-7G	_	4000 0 0 0	1	125			75) 125		
	1.5(2)			_	FRN0010E3S-7G	ACR2-2.2A						05	5 M5(6×10)			
	2.2(3)			FRN0010E3S-7G	FRN0012E3S-7G	ACR2-3.7A	1					25				2.4
	3.0(4)			FRN0012E3S-7G	-	ACR2-5.5A	1									

*The □ in the above inverter type indicates the symbol for each type.
Note) It is not necessary to use the reactor unless a particularly stable power supply is required, i.e., DC bus connection operation (PN connection operation). Use the DC reactor (DCR) as a measure against harmonics.
Note1) EMC filter built-in type is only available in HHD sprcification.

М

MAX

Zero-phase reactor for reducing radiated noise

2хф5.5 ψ 80±0.5

50 MAX 95

rta

50±0.

Applied wire size list

Туре	Q'ty	No. of turns	Recommended wire size [mm ²] Note)
ACL-40C	1	4	2.0, 3.5, 5.5
ACL-40C	2	2	8, 14
	1	4	8, 14
ACL-74C	2	2	22, 38, 60, 5.5×2, 8×2, 14×2, 22×2
	4	1	100, 150, 200, 250, 38×2, 60×2, 100×2
NOTE) Use a 600V HIV insulation	cable (Allow	able temp.	75°C)

Output circuit filter (OFL-____4A)

<OFL-___-4A>

- Suppresses the surge voltage (micro surge) generated at the motor connection end.
- Suppresses the high-frequency leakage current between wires to prevent overheating and
- overcurrent tripping in the inverter. There are no carrier frequency limitations.
- · Can also be applied to vector control inverters
- (auto-tuning is possible).

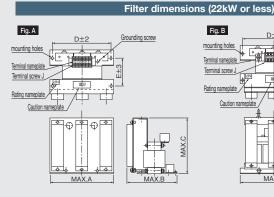
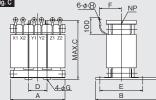



Fig. B Grounding screw D±2 mounting holes Terminal nameplate Terminal screw J Rating nameplate ╈ Caution nar h. <u>ْ</u> ŧ MAX.A MAX.E

Filter dimensions (30kW or more):reactor

Fig. C

Dimen ight [kg] Туре Fig Grounding Terminal в inal s D F Filter I Reactor Resistor and capacitor OFL-0.4-4A 175 195 95 7 OFL-0.4-4A OFL-1.5-4A OFL-3.7-4A OFL-7.5-4A OFL-15-4A OFL-22-4A OFL-30-4A 220 200 M4 M4 M5 А 220 230 310 330 210 115 160 145 170 140 225 290 275 14 22 35 45 3-phase 400V M5 290 260 M5 M6 в 330 300 M6 M6 M8 300 175 210 70 160 6.4 С 90 8 12

* This filter is not limited by carrier frequency.

Product Warranty

To all our customers who purchase Fuji Electric products included in this catalog:

Please take the following items into consideration when placing your order.

When requesting an estimate and placing your orders for the products included in these materials, please be aware that any items such as specifications which are not specifically mentioned in the contract, catalog, specifications or other materials will be as mentioned below. In addition, the products included in these materials are limited in the use they are put to and the place where they can be used, etc., and may require periodic inspection. Please confirm

these points with your sales representative or directly with this company. Furthermore, regarding purchased products and delivered products, we request that you take adequate consideration of the necessity of rapid receiving inspections and of product management and maintenance even before receiving your products.

1. Free of Charge Warranty Period and Warranty Range

1-1 Free of charge warranty period

(1) The product warranty period is "1 year from the date of purchase" or 24 months from the manufacturing date imprinted on the name place, whichever date is earlier

(2) However, in cases where the operating environment, conditions of use, use frequency and times used, etc., have an effect on product life, this warranty period may not apply. (3) Furthermore, the warranty period for parts restored by Fuji Electric's Service Department is "6 months from the date that repairs are completed."

1-2 Warranty range

- (1) In the event that breakdown occurs during the product's warranty period which is the responsibility of Fuji Electric. Fuji Electric will replace or repair the part of the product that has broken down free of charge at the place where the product was purchased or where it was delivered. However, if the following cases are applicable, the terms of this warranty may not apply.
 - 1) The breakdown was caused by inappropriate conditions, environment, handling or use methods, etc. which are not specified in the catalog, operation manual, specifications or other relevant documents
 - 2) The breakdown was caused by the product other than the purchased or delivered Fuji's product.
- 3) The breakdown was caused by the product other than Fuji's product, such as the customer's equipment or software design, etc.
- 4) Concerning the Fuji's programmable products, the breakdown was caused by a program other than a program supplied by this company, or the results from using such a program.
- 5) The breakdown was caused by modifications or repairs affected by a party other than Fuji Electric.
- 6) The breakdown was caused by improper maintenance or replacement using consumables, etc. specified in the operation manual or catalog, etc.
 7) The breakdown was caused by a chemical or technical problem that was not foreseen when making practical application of the product at the time it was purchased or delivered.
- 8) The product was not used in the manner the product was originally intended to be used.
- 9) The breakdown was caused by a reason which is not this company's responsibility, such as lightning or other disaster.

(2) Furthermore, the warranty specified herein shall be limited to the purchased or delivered product alone.(3) The upper limit for the warranty range shall be as specified in item (1) above and any damages (damage to or loss of machinery or equipment, or lost profits from the same, etc.) consequent to or resulting from breakdown of the purchased or delivered product shall be excluded from coverage by this warranty

1-3. Trouble diagnosis

As a rule, the customer is requested to carry out a preliminary trouble diagnosis. However, at the customer's request, this company or its service network can perform the trouble diagnosis on a chargeable basis. In this case, the customer is asked to assume the burden for charges levied in accordance with this company's fee schedule.

2. Exclusion of Liability for Loss of Opportunity, etc.

Regardless of whether a breakdown occurs during or after the free of charge warranty period, this company shall not be liable for any loss of opportunity, loss of profits, or damages arising from special circumstances, secondary damages, accident compensation to another company, or damages to products other than this company's products, whether foreseen or not by this company, which this company is not be responsible for causing.

3. Repair Period after Production Stop, Spare Parts Supply Period (Holding Period)

Concerning models (products) which have gone out of production, this company will perform repairs for a period of 7 years after production stop, counting from the month and year when the production stop occurs. In addition, we will continue to supply the spare parts required for repairs for a period of 7 years, counting from the month and year when the production stop occurs. However, it is estimated that the life cycle of certain electronic and other parts is short and it will be difficult to procure or produce those parts, so there may be cases where it is difficult to provide repairs or supply spare parts even within this 7-year period. For details, please confirm at our company's business office or our service office.

4. Transfer Rights

In the case of standard products which do not include settings or adjustments in an application program, the products shall be transported to and transferred to the customer and this company shall not be responsible for local adjustments or trial operation.

5. Service Contents

The cost of purchased and delivered products does not include the cost of dispatching engineers or service costs. Depending on the request, these can be discussed separately.

6. Applicable Scope of Service

Above contents shall be assumed to apply to transactions and use of the country where you purchased the products. Consult the local supplier or Fuji for the detail separately.

MEMO	

Product warranty

When running general-purpose motors

- Driving a 400V general-purpose motor
 When driving a 400V general-purpose motor with
 an inverter using extremely long cables, damage to
 the insulation of the motor may occur. Use an
 output circuit filter (OFL) if necessary after checking
 with the motor manufacturer. Fuji's motors do not
 require the use of output circuit filters because of
 their reinforced insulation.
- Torque characteristics and temperature rise When the inverter is used to run a general-purpose motor, the temperature of the motor becomes higher than when it is operated using a commercial power supply. In the low-speed range, the cooling effect will be weakened, so decrease the output torque of the motor. If constant torque is required in the low-speed range, use a Fuji inverter motor or a motor equipped with an externally powered ventilating fan.

Vibration

When the motor is mounted to a machine, resonance may be caused by the natural frequencies, including that of the machine. Operation of a 2-pole motor at 60Hz or more may cause abnormal vibration.

- * Study use of tier coupling or dampening rubber.
- * It is also recommended to use the inverter jump frequency control to avoid resonance points.

Noise

When an inverter is used with a general-purpose motor, the motor noise level is higher than that with a commercial power supply. To reduce noise, raise carrier frequency of the inverter. High-speed operation at 60Hz or more can also result in more noise.

When running special motors

High-speed motors

When driving a high-speed motor while setting the frequency higher than 120Hz, test the combination with another motor to confirm the safety of high-speed motors.

Explosion-proof motors

When driving an explosion-proof motor with an inverter, use a combination of a motor and an inverter that has been approved in advance.

Submersible motors and pumps

These motors have a larger rated current than general-purpose motors. Select an inverter whose rated output current is greater than that of the motor.

These motors differ from general-purpose motors in thermal characteristics. Set a low value in the thermal time constant of the motor when setting the electronic thermal function.

Brake motors

For motors equipped with parallel-connected brakes, their braking power must be supplied from the primary circuit (commercial power supply). If the brake power is connected to the inverter power output circuit (secondary circuit) by mistake, problems may occur.

Do not use inverters for driving motors equipped with series-connected brakes.

Geared motors

If the power transmission mechanism uses an

Phone: +81-3-5435-7066 Fax: +81-3-5435-7475

F Fuji Electric Co., Ltd.

Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo 141-0032, Japan

URL: www.fujielectric.com/

oil-lubricated gearbox or speed changer/reducer, then continuous motor operation at low speed may cause poor lubrication. Avoid such operation.

Synchronous motors

It is necessary to use software suitable for this motor type. Contact Fuji for details.

Single-phase motors

Single-phase motors are not suitable for inverter-driven variable speed operation. Use three-phase motors.

* Even if a single-phase power supply is available, use a three-phase motor as the inverter provides three-phase output.

Environmental conditions

Installation location

Use the inverter in a location with an ambient temperature range of -10 to 50°C.

The inverter and braking resistor surfaces become hot under certain operating conditions. Install the inverter on nonflammable material such as metal. Ensure that the installation location meets the environmental conditions specified in "Environment" in inverter specifications.

Combination with peripheral devices

Installing a molded case circuit breaker (MCCB)

Install a recommended molded case circuit breaker (MCCB) or an earth leakage circuit breaker (ELCB) in the primary circuit of each inverter to protect the wiring. Ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.

Installing a magnetic contactor (MC) in the output (secondary) circuit

If a magnetic contactor (MC) is mounted in the inverter's secondary circuit for switching the motor to commercial power or for any other purpose, ensure that both the inverter and the motor are fully stopped before you turn the MC on or off. Remove the surge killer integrated with the MC.

Installing a magnetic contactor (MC) in the input (primary) circuit

Do not turn the magnetic contactor (MC) in the primary circuit on or off more than once an hour as an inverter fault may result. If frequent starts or stops are required during motor operation, use FWD/REV signals.

Protecting the motor

The electronic thermal function of the inverter can protect the motor. The operation level and the motor type (general-purpose motor, inverter motor) should be set. For high-speed motors or water-cooled motors, set a small value for the thermal time constant to protect the motor.

If you connect the motor thermal relay to the motor with a long cable, a high-frequency current may flow into the wiring stray capacitance. This may cause the relay to trip at a current lower than the set value for the thermal relay. If this happens, lower the carrier frequency or use the output circuit filter (OFL).

Regarding power-factor correcting capacitor Do not mount power factor correcting capacitors in the inverter (primary) circuit. Use the DC REACTOR to improve the inverter power factor. Do

not use power factor correcting capacitors in the inverter output circuit (secondary). An overcurrent trip will occur, disabling motor operation.

Discontinuance of surge killer

Do not mount surge killers in the inverter output (secondary) circuit.

Reducing noise

Use of a filter and shielded wires are typical measures against noise to ensure that EMC Directives are met.

Measures against surge currents

If an overvoltage trip occurs while the inverter is stopped or operated under a light load, it is assumed that the surge current is generated by open/close of the phase-advancing capacitor in the power system.

We recommend connecting a DC REACTOR to the inverter.

Megger test

When checking the insulation resistance of the inverter, use a 500V megger and follow the instructions contained in the Instruction Manual.

Wiring

• Wiring distance of control circuit When performing remote operation, use twisted

shield wire and limit the distance between the inverter and the control box to 20m.

Wiring length between inverter and motor If long wiring is used between the inverter and the motor, the inverter will overheat or trip as a result of overcurrent (high-frequency current flowing into the stray capacitance) in the wires connected to the phases. Ensure that the wiring is shorter than 50m. If this length must be exceeded, lower the carrier frequency or mount an output circuit filter (OFL).

Wiring size

Select cables with a sufficient capacity by referring to the current value or recommended wire size.

Wiring type

Do not use multicore cables that are normally used for connecting several inverters and motors.

Grounding

Securely ground the inverter using the grounding terminal.

Selecting inverter capacity

• Driving general-purpose motor

Select an inverter according to the applicable motor ratings listed in the standard specifications table for the inverter. When high starting torque is required or quick acceleration or deceleration is required, select an inverter with a capacity one size greater than the standard.

Driving special motors

Select an inverter that meets the following condition: Inverter rated current > Motor rated current.

Transportation and storage

When transporting or storing inverters, follow the procedures and select locations that meet the environmental conditions that agree with the inverter specifications.