

Innovating Energy Technology

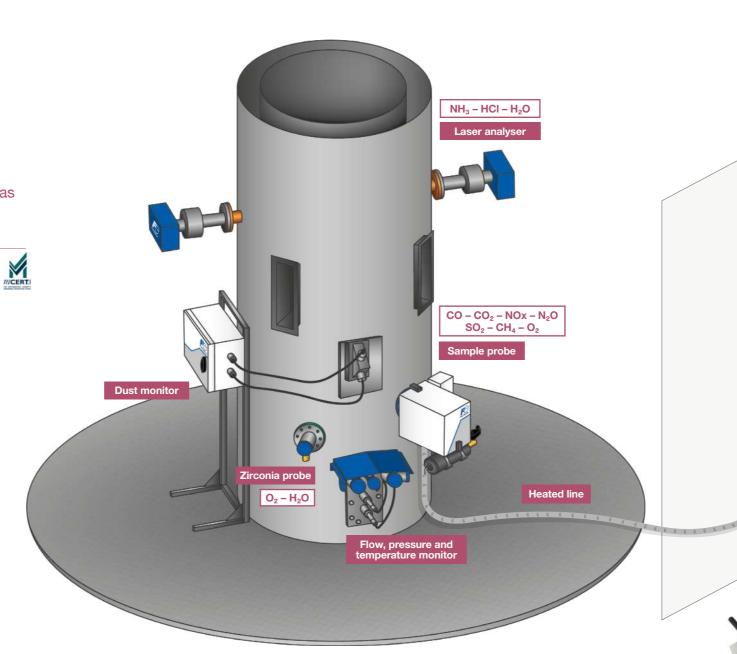
Gas Analysers

NDIR / Laser / Zirconia / Paramagnetic / Thermal Conductivity

Reliable gas solutions for gas analysis, proven know-how and state-of-the-art technology

Product Variety to Meet Your Needs

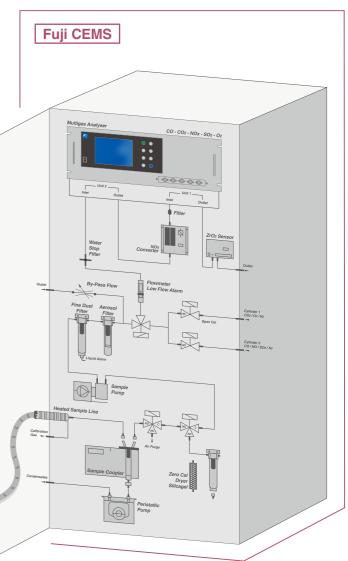
CEMS


Continuous Emission Monitoring Systems Long-Term superior stability

Simultaneous measurement of up to 14 components in flue gas

DUVRheinigand QAL1 EN 14181 Features

- For boilers, motors & gas turbines
- CE marked System QAL1 certified (TÜV / MCERTS)
- QAL2 validated
- QAL3 automatic Single beam or Dual beam NDIR
- Multi-sampling system
- Easy installation and maintenance
- Fuji DAHS ready
- FBOX for remote control & maintenance


General specifications

•••

•				
Measurable components	CO, CO ₂ , NOx, N ₂ O, SO ₂ , NH ₃ , HCI, CH ₄ , O ₂ , H ₂ O			
•	Pressure, Temperature, Flow / velocity, Dust concentration			
	CO, CO ₂ , NOx, N ₂ O, SO ₂ , CH ₄ : NDIR			
	O ₂ : zirconia, paramagnetic or electrochemical / H ₂ O: differential ZrO ₂			
Measuring principles	NH ₃ , HCl, H ₂ O: laser			
	Dust: LED light scattering (others as option)			
	Flow: Microventuri (others as option) / Pressure: Capacitive / Temperature: Pt100			
Response time (t90)	< 200s (NDIR)			
Response time (190)	<5s (laser)			
User interface	10" touchscreen interface with Fuji CEMS Manager ^{V7} software module			
	Modbus TCP/IP as a standard. Options: 4-20mA, Profibus, Modbus RTU, Internet / GSM (F-BOX)			
Output / communication	Status Autocalibration running, maintenance, normal operation, stack under monitoring			
	Alarms General alarm, low flow, condensates, sample probe, heated line, cooler, analysers			
Contact output	General alarm as standard and specifi alarms (see list above) as options			
Contact input	Boiler unit running (for multisampling mode and Fuji DAHS use)			
	Automatic calibration, automatic backflush			
Optional functions	Automatic QAL3 (combined with Fuji ACE Data QAL3 software module)			
Multisampling	Up to 4 stacks as a standard. Up to 8 stacks as an option.			
Campling System	Sample probe, heated line, filters, coolers and pumps designed according to customer application:			
Sampling System	humidity, quantity and type of dusts, pressure & flow rate, corrosion, stack size, etc.			
Calibration gases	Zero Calibration: N_2 or dry clean air			
(supplied locally)	Span calibration: CO, CO ₂ , NO, SO ₂ , CH ₄ , N ₂ O, NH ₃ , HCI : 90% of each measured component in N ₂			
	O ₂ zirconia: 21% O ₂ in N ₂ and 2% O ₂ in N ₂			
Power supply	100, 110, 115, 200 or 230 VAC, 50/60 Hz			
Dimensions (mm)	Single stack standard indoor cabinet : 600 (W) x 800 (D) x 1800 (H) – others according to application			

Specific performances

Analyser Type		ZRE: NDIR Single Beam		ZKJ: NDIR Dual Beam			
	NOx	0 - 200 / 0 - 5000 ppm	NOx	0 - 50 / 0 - 5000 ppm			
NDIR	SO ₂	0 - 200 / 0 - 5000 ppm	SO ₂	0 - 50 / 0 - 5000 ppm			
neasurement ranges	CO	0 - 200 / 0 - 5000 ppm	CO	0 - 50 / 0 - 5000 ppm			
see available combinations	CH ₄	0 – 500 / 0 – 5000 ppm	CH ₄	0 – 200 / 0 – 5000 ppm			
on analyser datasheet)	CO ₂	0 - 10 20 %	N ₂ O	0 - 200 / 0 - 5000 ppm			
	002	0 - 10 20 %	CO ₂	0 - 10 20 %			
	NH ₃	0 - 15 / 0 - 5000 ppm					
	Dust	0 - 10 / 0 - 1000 mg/Nm ₃					
Other	Pressure	800 – 1200 mbar					
uther measurement ranges	O ₂	0 - 10 25 %					
incusurement ranges	HCI	0 - 10 / 0 - 5000 ppm					
	Velocity	3 – 30 m/s (others as option)					
	Temperature	0 – 300°C					
Repeatability	≤ ±0.5 % FS	(NDIR & ZrO2)					
hepeatability	≤ ±1 % FS (la	aser)					
inearity	≤ ±1 % FS						
	≤ ±2 % FS p	er week (NDIR)	≤ ±1 % FS per week (NDIR)				
Zero drift	≤ ±2 % FS p	er month (ZrO ₂)	≤ ±2 % I	FS per month (ZrO ₂)			
	≤ ±2 % FS p	er 6 months (laser)	≤ ±2 % I	FS per 6 months (laser)			
	≤ ±2 % FS p	er week (NDIR)					
Span drift	≤ ±2 % FS p	er month (ZrO ₂)					
	≤ ±2 % FS p	er 6 months (laser)					

DAHS

Data Acquisition and Handling Systems

CEMS cabinet automation & Automatic QAL3 system Atmospheric emissions data collection, calculations and reporting system

└ CO │ CO2 │ NOx │ N2O │ SO2 │ NH3 │ HCI │ CH4 │ O2 │ H2O │ Pressure │ Temperature │ Flow

Fuji DAHS

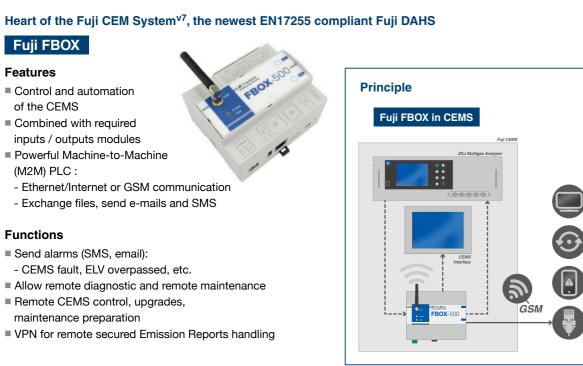
Features

- For boilers, motors & gas turbines
- Fuji CEM System^{v7} Software Suite including :
- Fuji CEMS Managerv7
- Fuji CEMS Remote^{v7}
- Fuji CEMS Backupv7
- Fuji CEMS Report^{v7}
- Fuji ACE Data^{QAL3} automatic QAL3 system
- Fuji FBOX controller and remote maintenance

Compliance

- EN17255:2019 European standard compliant
- Continuously upgraded to stick with regulation evolution

Adaptability


- Any brand of boiler CEMS
- Any fuel type fired boiler
- Single stack and also designed for multi-sampling CEMS

Design

Developed and maintained by Fuji Electric Engineers in France Software & Hardware robustness proven over 17 years

Data safety & security

- Data safety: Triple data saving system
- Data security: FBOX highly secured cloud data

Fuji CEM System^{v7} Software Suite performs acquisition, handling and reporting of emissions data. It is composed with 4 modules: Manager, Remote, Backup and Report

Fuji CEMS Managerv7

Control, automation and communication hub of the Fuji CEMS

- CEMS configuration and operation control with Fuji FBOX
- Data display (digital & graph) and safety (1st storage level on SD card)
- Alarms / status display and output through Modbus communication and/or digital outputs
- Operations selection : maintenance, calibration, QAL2, QAL3
- Data handling according to European Environmental Regulation including EN17255

Fuji CEMS Report^{v7}

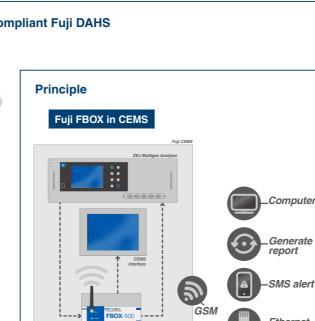
Features

- Generation and display of Emission Reports
- Generated and displayed locally or remotely
- French & European regulations Compliant
- Concentration and mass reports
- NOC & OTNOC separated reports
- Daily, Monthly and Yearly reports

All functions available locally on the CEMS cabinet interface are also available remotely on any PC web browser

Fuji CEMS Remotev7

Features


- Same functions as Fuji CEMS Manager^{v7}
- Remote control from any connected PC

Fuji Auto Check Extensive Data

Fuji ACE Data QAL3

Features

- QAL3 protocol configuration tool
- Designed for boilers / turbines emissions
- Quality assurance measurements control:
- CO, NOX, SO₂, CO₂, NH₃, O₂ - H₂O, Dust, Flow
- Manual and Automatic versions
- Manual: adapted to any CEMS brand - Automatic: controlled by Fuji FBOX
- CUSUM type Control Chart
- QAL3 Reports on demand

Fuji CEMS Backup^{v7}

Features

- Launch of automatic backups
- Management of backups history
- > 10 years backup data on 3 storage levels:
- FBOX internal memory
- PC operation HD drive
- PC backup SSD drive

- Ethernet / Internet communication
- Web browser interface

(2000) Lagant - 11 Jackson & Millers								<u> </u>
			QAL:	Circu	11			x
						QAL3 current state :		
AZ	Open Flow OK	Ze Ref	Msr	SP# Bef	Msr.		GAL3 failure	
Walting							Analyzer fallure :	
Current P	DryO2 bottle 🍙 🍥 🧿					Analyzer	communication 3	
Show raw values	cog nenlii							
Wee CE .	en u 🔗 🕮 🚳		-0.30				QAL3 command 1	9
Hamidity :	CO bottle 🚫 🌑 🔘	0.00	-0.30	1860.00	0.30		AL3 authorized 1	<u>o</u> .
Temperature :	NOx bottle 🥘 🕘 🔘			180.00				
	SO2 battle 🔵 🔘 🔘	0.00	0.00	180.00	0,00			
CD : A NO (H1, NO2) : A SO2 : A	Cancel QAL3						8	22

Biogas Analyser Systems

Continuous accurate measurement of biogas composition

Simultaneous and continuous measurement of up to 4 components in biogas

CH4 CO2 O2 H2S Pressure Temperature Flow

ZPSB (€

Applications

- Landfill site, ultimate waste storage site
- Upstream & downstream gas treatment biogas
- Digester and fermenters
- Sewage treatment plants ans laboratories

Global Fuji Solution

Part of the global FUJI Biogas solution

- The Biogas ZPSB analyser system is a part
- of the Fuji Biogas global solution including:
- Instrumentation, measurements, software, control
 Service: installation, commissioning, training, maintenance contracts

Low maintenance

Low operation cost & high reliability

- Fuji Electric CH₄ and CO₂ NDIR optical benches famous for reliable and accurate industrial measurements
- Specific protection of optical components to resist to H₂S and other aggressive components
- Fuji Electric Sample Switching Technology for long life time of the H₂S cell, without dilution
- Automatic calibration (option)

Precise

Proven high performances of Fuji analysers

- ZPAF Biogas analyser using latest Fuji Electric NDIR technology
- Cross-interferences minimized

Simultaneous & Continuous measurement of CH₄, CO₂, O₂ and H₂S

- Wall-mounted or standalone analyser cabinet
- depending on selected options
- Easy and fast installation and commissioning

Flexibility

Flexible and adaptable customized solutions site by site

- Polyester or metal cabinet for outdoor installation
- Industrial & biogas specific sampling system (high humidity, dust and corrosion) designed for each application
- Two measurement ranges for each component
- Multipoint sampling system with Fuji Electric touchscreen POD interface (option)
- ATEX sample heated line (option)

Safety options

 LEL detection, light alarm, mains power shut-down and biogas inlet closure
 Flame arrestor at biogas inlet

General specifications

ZPSB Biogas /	Analyser System	n based on Fuji ZPAF a	nalyser

Maesured components	1 to 4 measure	d components: CH ₄ /	CO ₂ / O ₂ / H ₂ S	
	CH ₄ / CO ₂	NDIR		
Technology	O ₂	Galvanic cell sensor		
	H ₂ S	Constant potential e	lectrolytic sensor	
	CH ₄ / CO ₂	0 – 20 %vol	0 – 100 %vol	
Measurement	O ₂	0 – 10 %vol	0 – 25 %vol	
Ranges	H₂S	0 – 500 ppm	0 – 2000 ppm	
	П ₂ 3	0 – 500 ppm	0 – 5000 ppm	
Power supply	100 to 240 V AC 50/60 Hz			
Display	Backlit LCD dis Fuji touch pane	play (Standard) I interface (Multipoint \$	Sampling Option)	
Displayed information	alarm calibi Option: Advanc	sured components, or ns, configuration menu rations and advanced sed functions with mul g (see multipoint syste	us, diagnostics tipoint	
Dimensions	Standard Single 750(W) x 750(H	e Point Wall mounted) x 500 (D)	cabinet:	
Weight	Standard Single	Point Wall mounted	cabinet: 50 kg	
Structure	j v	e Point Wall mounted blyester cabinet for ou		

Performances

	CH ₄ / CO ₂ / O ₂	≤ 30 sec
Response time	H ₂ S (0 – 2000 ppm)	≤ 180 sec
	H ₂ S (0 – 5000 ppm)	≤ 300 sec
Repeatability	CH ₄ / CO ₂ / O ₂	≤ ± 0,5% PE
nepeatability	H ₂ S	≤ ± 2% PE
Linearity	CH ₄ / CO ₂ / O ₂	≤ ± 1% PE
Linearity	H ₂ S	≤ ± 2% PE

Inputs/outputs

Analog Outputs	4 – 20 mA (one analog output per component)
	Standard: Concentration measurements and status
Communication	signals (alarms, calibrations)
Communication	RS485 Modbus RTU
	Option: Ethernet Modbus IP (multipoint sampling)
	Standard: Dry contact general alarm including
Digital Outputs	analyser fault and sampling system fault
Digital Outputs	General Alarm light indicator
	on cabinet front door

Environment conditions

Ambiant temperature	-5°C to +40°C
Ambiant humidity	90% RH max

Biogas sample conditionning

	PTFE or Stainless Steel tube
Sampling	4 to 6 mm internal diameter
	Option: ATEX heated line
	Sampling pump for ambient pressure or low
Biogas Pressure	pressure biogas (< 100 mbar g)
	High pressure biogas: system with pressure reducer
Cingle point	Continuous measurement of a single stream:
Single point	sampling, dryer, filtration, bypass, flow adjustment,
system	H ₂ S absorption (option)
	Additional advanced features:
	- Fuji Touchscreen interface and PLC
	- Configuration of the number of components
	measured (max. 4)
	- Configuration of the number of biogas
Multipoint	streams analyzed (max. 6)
system	- Configuration of stream switching sequence,
(Optional)	measurement times, purge times
(Optional)	- Automatic or manual switching setting
	- Display of the 4 (max) measured components
	concentrations of the 6 (max) analyzed streams
	- Display of sampling and analyser alarms
	- Modbus output of the measurement, status and alarms
	- Analog outputs and digital outputs (option)

FUIE			-	the state of the s	10000	\sim				-
	lectric					0	Use	er soltings		-
ating Everys	lectric technology	Gas An	alysis 🐼							<u>e</u>
	lectric technology gdir 1		ualysis 🐼	Sample		Per	ga time	Anton	de theor	
5449 314 (IN)	Nichteology Weiter 3 Loop (He)	Samp 1794(H)	nalysis naie 2 coz (%)	Sample (79+(%)	e 3 (0)/(%)					Ċ
5445 344 (36) 0.0	techeology geler 1 (cod (%) 0.0	5am 094(94) 0.0	nalysis qde 2 corr(%) 0.0	Sample (H+(k) 0.0	6.0 (0)(%)	Per	ga time	Anton	de theor	
Saes 0.0 0.0	techeology galer 1 (cot (H) 0.0 Rata (pp=4)	5400 074(94) 0.0 02.00	nalysis que 2 cor (4) 0.0 HDS(pp4)	5300pb (194(%) 0.0 02(%)	e 3 (0/(%) 0.0 R3 (pe)	Per Sangle 1 Sangle 2	rga titue 0 (4) 0 (6)	Analys Sangle 1 Sangle 2	D [04]	<u> </u>
Sam (4) 0.0	techeology geler 1 (cod (%) 0.0	5am 094(94) 0.0	nalysis qde 2 corr(%) 0.0	Sample (H+(k) 0.0	e 3 (0/(%) 0.0 R3 (pe)	Per Sample 3 Sample 3	0 (0) 0 (0) 0 (0)	Austro Sangle 1 Sangle 2 Sangle 7	0 00 0 00 0 00 0 00	<u> </u>
544 0.0 11 (M) 12 (M) 0.0	techeology galer 1 (cot (H) 0.0 Rata (pp=4)	5am 014(94) 0.0 02(9) 0.0	nalysis que 2 cor (4) 0.0 HDS(pp4)	5300pb (194(%) 0.0 02(%)	e 3 COJ (%) 0.0 HIS (şea) 0.0	Per Sangle 1 Sangle 2	rga titue 0 (4) 0 (6)	Analys Sample 1 Sample 2	D [04]	<u> </u>
5449 344 (56) 0.0 0.0 0.0 0.0 0.0 0.0 5449 5449 544 (56)	echeology (vite 1 coo (%) 0.0 922 (ype) 0.0 pbe 4 coo (%)	5.000 0.0 0.0 0.0 0.0 5.00 5.00 5.00	ualysis qde 2 coz (4) 0.0 ICS(594) 0.0 gde 5 coz (%)	Sample (3+(k) 0.0 0.0 0.0 Sample (3+(k)	e 3 001 (%) 0,0 NIS (spea) 0.0 mA 000 (%)	Per Sample 3 Sample 3	0 (0) 0 (0) 0 (0)	Austro Sangle 1 Sangle 2 Sangle 7	0 00 0 00 0 00 0 00	
5449 0.0 10.0 10.0 10.0 544 14(10) 0.0	techeology (de 1 ECC (He) 0.0 4.22 (Spee) 0.0 gale 4 CCC (He) 0.0	Sam CP4(H) 0.0 0.0 0.0 Sam CH4(H) 0.0	nalysis que 2 coz (%) 0.0 IES(pea) 0.0 gue 5 coz (%) 0.0	Sample (H+(k) 0,0 02(%) 0.0 Sample CH=(%) 0.0	+3 00/(%) 105(9+4) 0.0 105(9+4) 0.0	Per Sample 3 Sample 4 Sample 4 Sample 5	0 00 0 00 0 00 0 00 0 00	Andyn Sangle 1 Sangle 1 Sangle 3 Sangle 3 Sangle 5	0 04 0 04 0 06 0 04 0 04 0 04	-
5449 20+ (%) 0.0 92 (%) 0.0 91 (%) 5449 544 (%)	echeology (vite 1 coo (%) 0.0 922 (ype) 0.0 pbe 4 coo (%)	5.000 0.0 0.0 0.0 0.0 5.00 5.00 5.00	ualysis qde 2 coz (4) 0.0 ICS(594) 0.0 gde 5 coz (%)	Sample (3+(k) 0.0 0.0 0.0 Sample (3+(k)	e 3 001 (%) 0,0 NIS (spea) 0.0 mA 000 (%)	Per Sample 3 Sample 3 Sample 4	0 (H) 0 (H) 0 (H) 0 (H)	Anatys Sangle 1 Sangle 2 Sangle 7 Sangle 8	0 (d) 0 (d) 0 (d) 0 (d) 0 (d)	

Marine CEMS

Ships on board **Continuous Emission Monitoring Systems**

Monitor up to 7 components + marine specific calculations IMO / MARPOL certified by DNV-GL / LLOYD / RINA / Class NK

CO CO2 NOX SO2 HC O2 Dust Specific Calculations

CERIAR B DNV.GL ClassNK S-Keeper7

Software and Calculations

Large & easy Touchscreen interface:

Features

- According to MARPOL Annex VI Reg.13 and MEPC 177(58), 184(59)
- Calculation of NOx g/kWh vs Tier I, Tier II, Tier III limits
- Monthly NOx compliance test report
- According to MARPOL Annex VI Reg.14 and MEPC 177(58), 184(59)
- Calculation SO₂/CO₂ ratio
- Calculation of Fuel Oil Sulphur content (% wt/wt) vs Reg.14 limits
- According to MEPC 177(58), 184(59) HC total Hydrocarbons load (ppm or g/kWh) is measured

Utilities

Power supply	230 VAC @50/60 Hz
Maximum power	
consumption	4.8 kVA Max
(full model)	
Calibration gas	
bottle / each	1 bottle 110 L @ 20°C / 1 operative year approx
parameter	
Demi water	
(only lite-s, lite,	1 canister of 5 Liters / 3 operative months approx
full models)	

Dimensions & Weight

Main integrated cabinet	Sample line	Oxygen analyser (optional)
1050(W) x 1990(H) x 800(D)mm, 550 kg	Length TBD , 0.9 Kg/m	Integrated in main cabinet
Sample probe	Calibration bottle	Particulate analyser (optional)
Housing 251(W) x 297(H) x 168(D) mm, 9 kg, Length TBD	360(H) x 90(DN) mm, 1.1 kg	Flanged housing 342(L) x 74(DN) mm, 1.7 kg, Insertion length TBD

- Reports according to ISO 14001 of totalized mass NOx / SOx / CO₂ emissions (kg/tonne)
- Reports according to MEPC Circ. 471
- of CO₂ Emission Index (gCO₂ / tonne n.m.)
- Combustion Efficiency monitoring by CO₂ / (CO₂+CO) ratio Types EASY-N, LITE-N, LITE designed for LNG powered units

S-Keeper

- O₂ (%) & Particulate (mg/m3 or g/kWh)
- analysis as additional options
- Multiple stack management

Main Supply

	Integrated Cabinet	
	Sample probe & tube	
	Sample line	
	Bottles set (according to analyzed components)	

Ambient Conditions

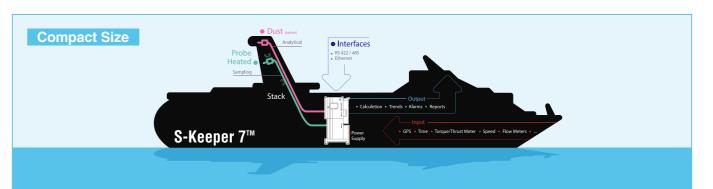
Main Integrated Cabinet	Ambient Temperature +5 / +55°C* ; 95% RH Max *50°C at 60Hz
Sample Probe	Ambient Temperature +5 / +55°C; 95% RH Max
Particulate Analyser (option)	Ambient Temperature +5 / +55°C; 95% RH Max

Modular System Selection table

Type MARPOL Annex VI		Annex VI	MEPC 177 (58)	Analyzed Components				Tier I/II/III	_	ISO	Analytical Options	
21	Reg.13	Reg.14	184 (59)	NOx	CO ₂	SO ₂	CO	HC	Limits	471	14001	
EASY-N	\checkmark	×	✓	 Image: A second s	 Image: A start of the start of	×	×	×	 Image: A second s	>	 Image: A second s	O ₂ , Particulate
EASY-S	×	~	~	×	~	>	×	×	×	>	~	O ₂ , Particulate
EASY	\checkmark	~	~	~	~	~	×	×	~	>	~	O ₂ , Particulate
LITE-N	\checkmark	×	~	~	~	×	~	×	~	>	~	O ₂ , Particulate
LITE-S	×	~	~	×	~	~	~	~	×	>	~	O ₂ , Particulate
LITE	~	×	~	~	~	×	~	~	~	>	~	O ₂ , Particulate
FULL	\checkmark	✓	~	 Image: A second s	~	>	 Image: A second s	~	 Image: A second s	>	 Image: A second s	O2, Particulate

Integrated Fuji Instruments

Fuji ZFK7 Oxygen ZrO₂ Analyser Extremely robust Zirconium Oxyde O2 Analyser Linked to ZPA multigas Analyser


Fuji ZPA Multigas NDIR Analyser Simultaneous and accurate measurement of up to 5 gas components among : CO, CO₂, NOx, SO₂, O₂

Technical Specifications

Analyzed components measuring method	 NOx, SO₂, CO, CO₂: NDIR (NO with NO₂ to NO converter) HC: H-FID heated flame ionization detector
Auxiliary inputs	Engine speed and Torque, Air inlet flow, Fuel flow, Ambient temperature, Pressure & Humidity sensors as per "NOX Technical Code 2008", Ship GPS Global Positioning System
Software	 Windows®-based Emissions Reporting software Easy self-explaining graphical interface with Process Flow Diagram and real-time parameters Multilevel Password Protection and Data Encryption to ensure safest tamperproof procedure I/O
Connections	1 x Ethernet RJ45, 1 x RS-485, 1 x SPDT contact

Oxygen Analyser (Option)

Measurement method	Zirconium oxide
Measurement range	0 ÷ 25 % (dry)
Installation	Integrated in main cabinet

Fuji ZDL NOx Converter

Very high efficiency NOx converter 220°C controlled temperature for best selectivity

Sampling System					
Sample conditioning system	According to "NOX Technical Code 2008" with system condition monitoring and maintenance indicators				
Sample probe technical specifications	 Operative Conditions: max. 200 kPa, 180°C Filter element: Bonded Silicon Carbide (CSi) Wetted parts: SS316Ti, CSi, Viton® Flanged Process Connection: DN 65 PN 6 DIN 2573 Housing: SS304, IP43 rating 				
Sample line technical specifications	Operative Temperature 190°C/Max 210°C/Peak 250°C Maximum Operating Pressure 2.8 barg@200°C Wetted parts PTFE material External diameter 43 mm End Caps diameters 48 mm Minimum Allowable Bending Radius 200 mm External insulation Fiberglass				

Particulate Analyser (Option)

Measurement method	Inductive Electrification	
Measured particle size	0.3 μm or higher	
Measurement range	Lowest value 0.1 mg/m ³	
Installation	In-Situ, flanged to stack	

Marine Laser SO₂-CO₂ Analysers

Ships Scrubbers Laser Gas Analyser

Continuous monitoring of SO₂ and CO₂ in severe en environment IMO Resolution MEPC.259 (68) certified by DNV-GL & Class NK

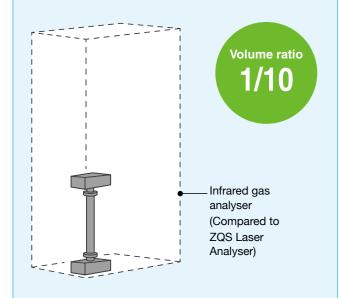
CO₂ SO₂

ZQS

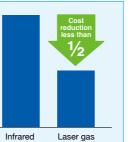
DNV.GL ClassNK

Benefits

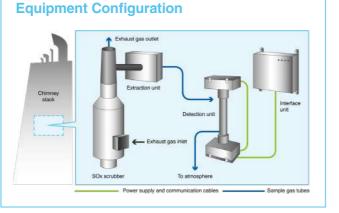
Laser Gas Analyser has mainly 3 benefits for any ship: Compact, low running cost and easy maintenance. Emission control has become more stringent to reduce sulfur oxides (SOx) emitted from ships. The ZQS laser gas analyser developed by Fuji Electric, will meet the customer needs by providing accurate monitoring of exhaust gases and by saving space and maintenance.


Features

- Laser Technology
- SO₂ and CO₂ continuous monitoring
- Calibration required only once a year
- CE marked and IMO certified analyser
- Compact size
- Low running cost
- Easy maintenance, only filter replacement


Compact Size

We have succeeded in reducing the size 1/10 of the infrared type. Therefore, it can be easily installed even in a narrow space inside a ship. It is suitable for either the retrofit of existing in-service ships or new ships.


Low running cost

Compared to infrared gas analysers, the maintenance cost can be reduced to less than 1/2 because the number of replacement parts is small and its calibration is required only once a year.

analyser

gas analyser

Technical Specifications

Components	SO ₂ : 0 to 300 ppm			
and ranges Principle	CO ₂ : 0 to 10 vol% Laser TDL (CO ₂) + Laser QCL (SO ₂)			
Measuring	(107) (107			
method	Gas extraction method			
Measuring object	SOx scrubber outlet flue (dedicated) for marine engine exhaust gas			
Light source	Semiconductor laser			
Laser class	CLASS 1 (laser devices are Class 1 and Class 3B)			
Dimensions (W×H×D)mm	Detection unit: 330 (W) \times 880 (H) \times 255 (D) mm Extraction unit: 400 (W) \times 300 (H) \times 323 (D) mm *Depth varies with the diameter of the duct Interface unit: 500 (W) \times 400 (H) \times 166 (D) mm			
Weight (except cables)	Detection unit: 30 kg Extraction unit: 18 kg Interface unit: 20 kg			
Enclosure	Indoor use, IP44 (totally enclosed, splash-proof) Only the extraction unit fan: IPX4			
Materials	Detection unit: Stainless steel Extraction unit: Stainless steel Interface unit: Stainless steel			
Materials of gascontacting parts	SUS316L, CaF2, FKM, Silicone, PTFE, Glass, PVDF			
Power supply	100–240 V AC, 50/60 Hz			
Power consumption	Max. rated power: 1,000 VA			
Display	LED indicator lamps			
Display content	Warm-up, measurement, maintenance request, standby, analyser error			
Communication functions	Ethernet / Protocol: Modbus TCP			
Cable length	Between the receiver unit and the transmitter unit: 1 m Between the detection unit and the interface unit: \leq 15 m Between the extraction unit and the interface unit: \leq 20 m			
Analog output (AO)	4 to 20 mA DC, 3 points Insulated from the grounding line and the internal circuit. Not insulated between signals. Load resistance: $\leq 300 \Omega$ Output contents: SO ₂ concentration, CO ₂ concentration, SO ₂ /CO ₂ ratio Output is held at 0% during maintenance and during suspension of scrubber			
Analog input (Al)	4 to 20 mA DC, 1 point Insulated from the grounding line and the internal circuit Not insulated between signals Input contents: exhaust gas temperature			
Digital output (DO)	SPST-NO relay contact, 4 points Contact capacity: 30 V DC, 1 A (resistive load) Insulated from the internal circuit. Contacts are not insulated each other (shared COM) Output contents: maintenance, warm-up, sampling suspension, maintenance request, analyser error (extraction unit error, detection unit error), power interruption			
Digital input (DI)	Voltage contact input, 4 points Contact ON at 18 to 25 V input Insulated from the internal circuit Contacts are not insulated each other (shared COM) Input contents: maintenance, EGCS on/off			

Performance

Accuracy	Not more than $\pm 2.0\%$ rdg or $\pm 0.3\%$ FS whichever is larger			
Precision	2.5 times the standard deviation of 10			
Precision	repetitive responses: $\leq \pm 1.0\%$ FS			
Noise	≤ 2.0% FSp-p			
Zero drift	≤ ±2.0% FS for 6 months			
Span drift	$\leq \pm 2.0\%$ FS for 6 months			
Response time	< 180 s			
(90% FS response)	S 100 S			
Warm-up time	≤ 120 min			
	Within the error in the case of any of the following			
Other gee	interfering gases flowing: $\leq \pm 2.0\%$ FS			
Other gas interference	(1) 500 ppm NO (2) 200 ppm NO ₂ (3) 2000 ppm CO			
	(4) 10 ppm NH ₃ (5) 10 ppm CH ₄ (6) 60°C saturated H ₂ O			
	Nitrogen (N2) is used for diluting these gases			

Installation Environment

Ambient temperature		Extraction unit: 0°C to 65°C Detection unit: 0°C to 55°C Interface unit: 0°C to 45°C However, air purge is necessary between 40°C to 45°C. Sample gas tube: 0°C to 65°C			
Ambient humidity		≤ 90%RH (No condensation)			
Vibration		$\leq 0.2 \text{ G} (1.9 \text{ m/s}^2)$			
Storage environment		Ambient temperature: -20°C to 70°C Ambient humidity: ≤ 100%RH (No condensation)			
Flange		JIS 5K65A (Others on request)			
Requirements on instrument	Flow rate	≤ 150 L/min			
air	Pressure	0.3 to 0.4 MPaG			

Requirements on Exhaust Gas

Condition	Exhaust gas after cleaning witha SOx scrubber			
Gas temperature	5°C to 60°C			
Exhaust gas mist concentration	There should be none *Even if mist production is unavoidable, measurement is possible. However, the higher the mist concentration, the higher the likelihood of adverse effects such as extraction unit piping corrosion and premature filter clogging			
Water vapor	≤ 20 vol% (below 60°C dew point)			
Pressure	-10 kPa to 10 kPa			
Gas composition	SO2 CO2 NOX CO O2 CH4 NH3 Others N2, H2O	 ≤ 300 ppm ≤ 10 vol% ≤ 1000 ppm ≤ 2000 ppm 1 vol% to 21 vol% ≤ 10 ppm ≤ 10 ppm 		

Calibration

Calibration interval (recommended)	1 year
Calibration method	Standard gases flow through the detection unit gas cell. - Zero gas (Conforms to NOx Technical Code 2008) Pure nitrogen: impurities ≤ 1ppm C ≤ 1ppm CO ≤ 400ppm CO ₂ ≤ 0.1ppm NO - Span gas (Conforms to NOx Technical Code 2008) SO ₂ concentration: 240 - 300 ppm CO ₂ concentration: 8 - 10 vol%

Complied Standards

IMO Resolution MEPC.259 (68)

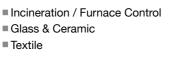
"2015 Guidelines for Exhaust Gas Cleaning Systems." IMO Resolution MEPC.177 (58)

"NOx Technical Code 2008."

Industrial Process Gas Analyser Systems

Hardware & Software tailor made analytical systems according to customer specific process requirements

Simultaneous and continuous measurement of up to 13 gas components


CO CO2 NO NO2 NOX N2O SO2 NH3 HCI CH4 O2 H2O H2

Industrial sectors

With a wide range of available analytical technologies, combined with internal PLC & software developments, as well as internal engineering teams, Fuji Electric France supply turnkey analytical solutions for :

Metal industry Pulp & Paper Oil & Gas

Biogas ■ Food & Beverage Energy / Combustion Control

Application examples

CO CO2 O2 H2O

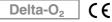
Continuous Galvanizing Line Control

15 Streams Multisampling system

Methanization scrubber exhaust control

Laser in-situ NH₃ ppm continuous monitoring

Laser extractive H₂S ppb continuous monitoring Dedicated acquisition and interface software



Flue Gas Humidity Monitors

Continuous measurement of humidity in highly dusts loaded flue gas through dry and wet zirconia oxygen measurements

In-situ or extractive O₂ + H₂O monitors depending on the application

O₂ dry O₂ wet H₂O

Features

- O2 and H2O flue gas monitoring
- Measurements :
- Wet O2 concentration
- Dry O2 concentration
- H2O concentration (option)
- Perfect for dusty applications
- Delta-O2 IS: in-situ version for indoor applications :
- stand alone all-in-one instrument
- compact and light design
- short response time
- Delta-O2 SA : extractive version for outdoor and adaptable to a very wide range of applications

Applications

- Combustion plant atmospheric emissions monitoring
- Wet biomass combustion control

Specifications

Delta-02 Type	In-situ : Delta-O ₂ IS	
Measuring principle	Fuji Electric ZFK8 zirconium oxide	
Measuring ranges	Wet O ₂ : 0 / 25 % Dry O ₂ : 0 / 25 % H ₂ O : 0 / 100 % (option)	
Main components	In-situ flow guide tube ZKM transmitter + ZFK8 probe for wet O_2 Dusts and tar filter and sample pump Cooler and peristaltic pump ZKM transmitter + ZFK8 probe for dry O_2	
Mouting type	Stand-alone cabinet fixed on flow guide tube	
Flue gas temperature	300°C max.	
Ambient temperature	+5 / +40°C	
	4-20 mA DC and for wet O ₂	
Output signals	4-20 mA DC for dry O ₂	
	4-20 mA DC H ₂ O (option)	
Response time	< 10s	
Display	Backlit LCD	
Options	Fuji Electric Touch Screen interface H ₂ O concentration calculation H ₂ O 4-20 mA additional analog output Alarm outputs Modbus RTU or Modbus IP communication Automatic calibration and/or automatic backflush Cabinet heater and/or cabinet cooler	
Power supply	100–120 V AC or 200–240 V AC, 50/60 Hz	
· enc. cupply		

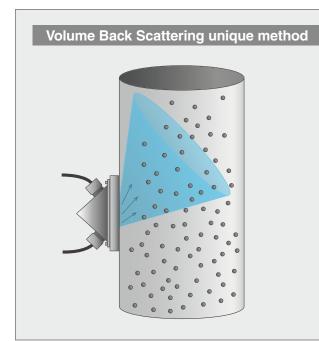
Delta-O2 IS

Extractive : Delta-O ₂ SA
Heated sample probe + heated sample line ZKM transmitter + ZFK8 probe for wet O_2 Sample pump Cooler and peristaltic pump ZKM transmitter + ZFK8 probe for dry O_2
Sample probe on stack + remote cabinet
-20 / +50°C
< 30s

Flue Gas Dust Monitors

Robust and accurate back scattering dust monitor for rough industrial installations

QAL1 certified continuous monitoring of particulates concentration

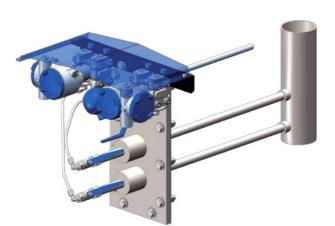

Features

Dusts

- LED Technology
- Volume Back Scattering principle
- Very high sensitivity
- Single scanner head for easy installation
- Adapted to very low dust concentration levels
- Automatic contamination monitoring and compensation
- Permanent full self-diagnosis functions

Applications

- Continuous particulates emissions monitoring:
- Coal, biomass, and other solid fuels fired boilers
- Oil fired boilers, diesel engines


Specifications Analyser panel Housing Epoxy metallic paint (option SS304L) 230V ~ / 115V ~ (+10/-15%) 50 Hz / 60 Hz Power supply Power 50 VA consumption Operating -20 to +50°C temperature 400 mm to 8 m Stack diameter Measuring range 0 to 1000 mg/Nm³ Measuring scale adjustable, minimum 10 mg/Nm³ Display From 0.1 to 1 mg/Nm³ according to scale resolution Twin measuring Automatic scale switch-over scale Analogue Three 4-20 mA for 750 Ohms output Digital 4 programmable relays on scale, threshold, processing fouling level and general fault Certifications CE mark, QAL1 (EN14181:2014) Scanner head Stainless steel 304L Shell Heating element | Electric resistor 500 VA Sweeping air 0.3 to 0.4 bars / 3 Nm³/h pressure/flow rate Maximum flue 350°C (high temperature 700°C option) gas temperature Automatic Air presence and temperature control self-checks Weight 4,8 kg Fibre Optic Sensor tip Stainless steel 304L and sheath Standard length 2.20 m Admissable -20 to 220°C temperature on fibres

Flue Gas Flow Rate Monitors

Microventuri based continuous monitoring of flue gas flow rate, pressure and temperature

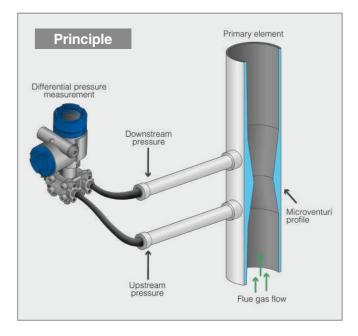
Designed for tough industrial applications with highly dusts loaded flue gas

Applications

- Environmental Monitoring :
- Combustion plants
- Incineration
- District Heating
- CEMS in a wide range of industry sectors

Fuji Electric Components

- Designed and manufactured by Fuji Electric France : - FKC very high performance Pressure Transmitters
- Fuji Electric Hardware and Software (option) design


Adaptability

- Mounted on small or large diameter stacks
- Only one flange on only one side of the stack
- Perfect for very dusty applications :
- No clogging possible
- Biomass, coal or fuel fired boilers

Turnkey System

- One single flange on the stack Three signals :
- Differential pressure / Velocity
- Static pressure
- Temperature

Measuring principles	MicroVenturi, differential pressure, Pt100	
Measuring ranges	Flow: 0 / 1.000.000 m3/h Temperature : 0 / 300°C Differential pressure : 0 / 10 mbar Static pressure : 800 / 1200 mbar	
Ambient temperature	Range: -20 / +50°C	
Flue gas velocity	Minimum: 3 m/s	
Output signals	nals Analog: 3 x 4-20 mA	
Options	Fuji Electric Touch Screen interface Normalized flow calculation Alarm outputs Modbus communication Automatic backflush	
Power Supply	110 VAC, 230VAC, 24 VDC	

NDIR Multigas Analysers

Up to 5 gas components concentration measurement

Single beam NDIR analyser

(€

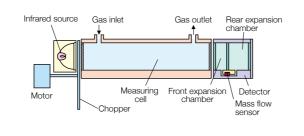
CO CO2 NO NOX SO2 CH4 O2

ZRE

Features

- Simultaneous and continuous measurement of up to 5 components
- Two ranges for each component can be selected and freely modified by the user
- Simple internal structure for ease of maintenanceCompact and lightweight:
- 483 (W) × 133 (H) × 418 (D) mm, 8 kg
- Full choice of technologies for the O2 measurement: electrochemical, paramagnetic or zirconia

Measurement range


Component	Minimum range	Maximum range
NO	0 200 ppm	0 5000 ppm
SO ₂	0 200 ppm	0 10 vol%
CO ₂	0 100 ppm	0 100 vol%
CO	0 200 ppm	0 100 vol%
CH4	0 500 ppm	0 100 vol%
O2 - Built in fuel cell	0 10 vol%	0 25 vol%
O ₂ - Built-in paramagnetic - External zirconia	0 5 val%	0 25 vol%

Main Specifications

Developed a la l	0.5% EQ	
Repeatability	±0.5% FS	
Linearity	±1% FS	
Zero drift	±2% FS / week (with auto zero calibration for ranges 500ppm or less)	
Span drift	±2% FS / week	
Response time (for 90%)	≤ 60 s	
Output signal	4–20 mA DC or 0–1 V DC, up to 12 points	
Contact input	Volt-free contact: remote range-switching, auto-calibration remote start, remote hold, average reset, pump on/off	
Contact output	SPST-NO and SPDT contact: analyser error, calibration error, range identification, during auto-calibration, pump on/off, CO peak alarm, H/L limit alarm, power interruption	
Communication (option)	RS485 (Modbus®)	
Display	LED-backlit LCD, instantaneous value, O ₂ corrected instantaneous value, O ₂ corrected average value, O ₂ average	
Power supply voltage	100–240 V AC, 50/60 Hz	
Power consumption	100 VA	
Dimensions and weight	483 (W) × 133 (H) × 418 (D) mm, 8 kg	

Single beam NDIR principle

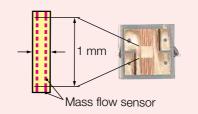
Detection principle

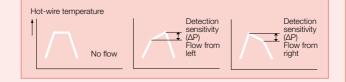
The mass flow sensor measures the amount of infrared light absorbed in the measurement cell.

Mass flow sensor

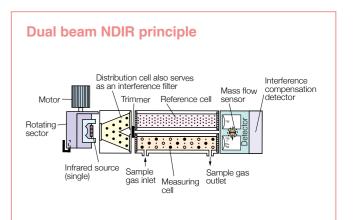
Converts the infrared absorption into an electrical signal. Excellent noise resistance thanks to the low impedance sensor. The absence of moving parts makes the device resistant to vibration.

Dual beam NDIR analyser




Features

- Dual beam reference cell principle allow highest performances
- Lowest ranges down to 0-20 ppm
- Excellent zero-point stability: ±1% FS per week
- Integrated interference detectors allow very low cross interferences
- Clear and easy user friendly interface with superior functionalities for diagnosis and calibrations


Measurement range

Component	Minimum range	Maximum range
NO	0 50 ppm	0 5000 ppm
SO ₂	0 50 ppm	0 10 vol%
CO ₂	0 20 ppm	0 100 vol%
CO	0 50 ppm	0 100 vol%
CH4	0 200 ppm	0 100 vol%
N2O	0 200 ppm	0 2000 ppm
O2 - Built in - External zirconia	0 5 vol%	0 25 vol%

Main Specifications

Repeatability	±0.5% FS (± 1% FS for the ranges below 50 ppm)	
Linearity	±1% FS	
Zero drift	$\pm 1\%$ FS per week (± 2% FS for the ranges below 50-200 ppm range)	
Span drift	±2% FS per week (± 2% FS for the ranges below 50 ppm range)	
Response time (for 90%)	≤ 60 s	
Output signal	4-20 mA DC or 0-1 V DC, up to 12 points	
Contact input	Volt-free contact: remote range-switching, auto-calibration remote start, remote hold, average reset, pump on/off	
Contact output	SPST-NO and SPDT contact: analyser error, calibration error, range identification, during auto-calibration, pump on/off, CO peak alarm, H/L limit alarm, power interruption	
Communication (option)	RS485 (Modbus®)	
Display	LED-backlit LCD, instantaneous value, O ₂ corrected instantaneous value, O ₂ corrected average value, O ₂ average	
Power supply voltage	100–240 V AC, 50/60 Hz	
Power consumption	250 VA	
Dimensions and weight	483 (W) × 177 (H) × 600 (D) mm, approx 22 kg	
	·	

ZrO₂ Extractive Analysers

Zirconia sensor for ZRE and ZKJ extractive analysers

Robust, extra-long life and accurate O₂

extractive zirconia sensor

Linked to any Fuji Electric multigas analyser interface

Features

- Controlled by Fuji Electric multigas analysers ZRE or ZKJ
- Very long life zirconia sensor, perfect stability Adapted to severe environment conditions
- such as shocks and vibrations

Mesuring ranges

Measurable Component		Range
O ₂	Oxygen	0 to 25 vol%

Specifications

Repeatability	Within ± 0.5% of full scale		
Linearity	Within ± 1% of full scale		
Zero drift	Within ± 1% of full scale/week		
Span drift	Within ± 2% of full scale/week		
Response time	Approx. 20 seconds (for 90% response)		
Measured gas flow rate	0.5 ± 0.25 L / min		
Gas inlet/outlet size	Rc ¼ or NPT ¼		
Power supply	Rated voltage: 100 to 115V AC or 200 to 240V AC Rated frequency: 50 Hz/60Hz Max. rated power: 215VA (at start up) 65VA (during normal operation)		
Enclosure	Steel casing, for indoor application		
Indication	Temperature indication (LED)		
Temperature alarm output	Contact output 1 from A contact, Contact capacity 220V AC, 1A (resistive load)		
Outer dimensions	141(W) x 170 (H) x 190(D) mm		
Weight	Approx. 3kg		

NDIR Biogas Analysers

Biogas composition multigas analysers Continuous and simultaneous measurement of 4 components including H₂S

Landfill, waste storage, digesters, fermenters and sewage treatment plants

Components and ranges

	1 st range	2 st range	Principle
CH4	0 20 vol %	0 100 vol %	Single-beam NDIR
CO ₂	0 20 vol %	0 100 vol %	Siligie-bealti NDIN
H ₂ S	0 500 ppm	0 2000/5000 ppm	Constant-potential electrolytic
O2	0 10 vol %	0 25 vol %	Galvanic fuel cell

Specifications

B	
Repeatability	±0.5% FS (H2S: ±2.0% FS)
Linearity	±1.0% FS (H2S: ±2.0% FS)
Zero drift	±2% FS per week
Span drift	$\pm 2\%$ FS per week (H ₂ S: $\pm 2.5\%$ FS per week or $\pm 5\%$ FS per day)
Response time (for 90%)	10-30s (H2S: 180s)
Output	4-20mA DC or 0-1V DC
Contact input	12-24V DC, ≤ 9 points
Contact output	SPDT, ≤ 15 points
Communication (option)	RS-485 (Modbus®)
Display	Backlit LCD
Power supply voltage	100-240 V AC, 50/60 Hz
Dimensions and weight	483 (W) × 133 (H) × 382 (D) mm, approx. 9 kg

NOx Converters

NO₂ to NO converter for NOx measurements

Combustion plants, incineration, steel plants, furnace control, CEMS, research labs

NOx

ZDL05 ()

Features

High NO₂ to NO conversion efficient catalyst

Compact, easy to install and catalyst easy to replace

Specifications

Catalyst	Volume : 2 / 4 / 6 cm ³ Replacement cycle: Approx. every 12 months when $O_2=5\%$ and $NO_2=10$ ppm	
Temperature	PXE4 temperature controller	
control	Temperature setting: 220°C; Thermocouple K	
Materials in contact with the gas	Ceramic, Viton, glass wool, SS316	
Conversion	95% or higher	
efficiency	compliant with EN15267 / QAL1 requirements	
Sample conditions	0,5 l/min flow rate dust and condensates free 150°C or lower	
Ambient temperature	-5°C to +45°C	
Power Supply	110 to 240 VAC, 50/60Hz, Approx. 85VA	
Contact output	Temperature alarm	
Dimensions/Weight	t 212(H) x 148(W) x 130(D) mm / 1,2 kg	

NDIR CO₂ Controllers

Greenhouses and ventilation CO₂ monitoring

Long term stability, accurate, robust and reliable CO₂ monitoring

CO₂

CE **ZFP9**

Features

- Wall mount type
- Built-in pump and filter

Applications

- Protected horticulture
- Buildings ventilation systems
- Controlled atmosphere storage facilities

Features

- Industrial and accurate biogas analyser
- Easy operation and maintenance

Target	CO2 in air			
Principle	Single-beam NDIR			
Measurement range	0 0.2 20%			
Repeatability	±1% FS			
Zero drift	±10% per 6 months			
Response time (for 90%)	≤ 10 s			
Gas sampling	Suction pump and filter			
Power supply voltage	100 V, 115 V, 200 V, or 230 V AC, 50/60 Hz			
Dimensions and weight	220 (W) × 257 (H) × 85 (D) mm, approx. 3 kg			

Thermal Conductivity Gas Analysers

Continuous TCD measurement of H₂, He, Ar, etc.

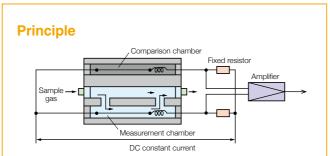
Reliable process control for furnaces, metal industry, semiconductor and gas separation

He Ar H₂ CO₂ CH₄

CE ZAF

Features

- Easy-to-see LCD
- RS-232C Modbus[®] (option)
- Auto calibration (option)
- Interference compensation (option)
- Concentration alarm output (option)
- Two switchable ranges (option)


Specifications

Principle	Thermal conductivity			
Components	He, Ar, H ₂ , CH ₄ , CO ₂			
Measurement range	Depends on components and ranges			
Repeatability	1% FS			
Linearity	2% FS			
Response time (for 90%)	\leq 60 s (standard), \leq 10 s (fast response version)			
Output signal	4-20 mA DC, 0-1 V DC, or 0-10 mV DC			
Contact output (option)	5 SPST-NO contacts: during calibration, H/L alarm, etc.			

Measurable components and ranges

Sample gas	Reference gas*1	Measurement range	Maximum range ratio
H2	N ₂ , (CO ₂ , Ar, He)	0 3, 5, 10, 20, 50, 80, 100% 100 90%, 100 80%	1:10
He	N2, (CO2, Ar), O2, Air	0 5, 10, 20, 30, 40, 50, 80, 100% 100 90%, 100 80%	1:10
Ar	N2, O2, Air, (He)	0 10, 20, 50, 80, 100% 100 90%, 100 80%	1:5
CH4	N2, (CO2, Ar, He)	0 20, 40, 50, 60, 80, 100% 100 80%	1:5
CO ₂	N2, O2, Air, (He)	0 10, 20, 50, 100% 100 90%	1:5

*1: Those in parenthesis need consultation. Measurement of H2 included in O2 is not available.

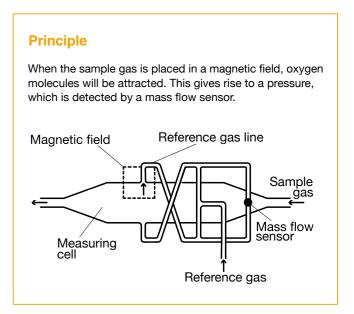
Because the thermal conductivity is different among gas components, when there is a change in the concentration of the component under measurement, the thermal conductivity of the sample gas will change to affect the temperature of the platinum wire. The analyser uses the temperature change to determine the gas concentration.

Contact input (option)	3 volt-free contacts; output hold, range switching, auto-calibration start			
Display	Backlit LCD			
Communication (option)	RS-232C Modbus®			
Mounting	Panel mounting			
Power supply voltage	100-240 V AC, 50/60 Hz			
Dimensions	192 (W) × 240 (H) × 213 (D) mm			
Weight	Approx. 5 kg			

Paramagnetic Oxygen Analysers

Fast response unaffected by combustible gas Combustion control in industrial furnaces and incinerators

O2



Features

- Fast response within 2 seconds
- Tolerant to interference from other gas (H₂, CO₂, etc.)
- Suppressed ranges available (e.g. 21–100%O2)
- No moving parts—low maintenance
- Automatic calibration, communication (option)

Interference effects

Background gas (100%)	Zero drift (%)
NO	+43
CO	+0.01
CO ₂	-0.27
CH4	-0.20
He	+0.30
H2	+0.24
HCI	-0.30
NH3	-0.26
SO ₂	-0.22
N2O	-0.02
H ₂ O	-0.02

Principle	Paramagnetic (pressure detection)			
Maaaaaa	When reference gas is N2: 0 0.5 100% O2 (configurable)			
Measurement	When reference gas is air: 21 23 100% O2			
range	When reference gas is 100% O2: 100 98 0% O2 (configurable)			
No. of ranges	2			
Repeatability	±1% FS			
Linearity	±1% FS			
Response time (for 90%)	≤2s			
Output signal	4–20 mA DC			
Contact output (option)	6 SPST-NO contacts: during calibration, etc. 4 SPDT contacts: H/L alarm, etc.			
Contact input (option)	Remote range-switching, remote hold			
Display	Backlit LCD			
Communication (option)	RS-485 (Modbus [®])			
Installation	19" rack or panel mounting, or benchtop			
Power supply voltage	85–264 V AC, 50/60 Hz			

Portable NDIR Multigas Analysers

Up to 4 gas components concentration measurement

Portable NDIR Analyser

high performance multigas analyser

Features

- Portable type with built-in pump, filter, and flowmeter
- CP calculation, O₂ correction, O₂ corrected average
- Easy-to-see LCD

Compact and light

ZSVS

CO₂ CO CH₄ O₂

Single-beam system: long-term stability and low maintenance

Interactive interface

Simple operation assured by clear display

Specifications

Components	CO2, CO, CH4, O2		
Principle	Single-beam NDIR + Galvanic O2 sensor		
	CO2: 0 200 ppm 100%		
Magaurament range	CO: 0 200 ppm 100%		
Measurement range	CH4: 0 1000 ppm 100%		
	O2: 0 5/10/25%		
Repeatability	±0.5% FS		
Zero drift	±1% FS per day		
Span drift	±1% FS per day		
Response time (for 90%)	≤ 50 s		
Output signal	4–20 mA DC or 0–1 V DC		
Communication	RS-232C Modbus®		
Standard functions	CP calculation, O ₂ correction, O ₂ corrected average, automatic light-off		
Display	Backlit LCD		
Power supply voltage	100-115 V AC or 200-240 V AC		
Dimensions	365 (W) × 211 (H) × 527 (D) mm		

Portable Multigas Analyser Systems

Analysis unit

Up to 5 gas components sampling and measurement

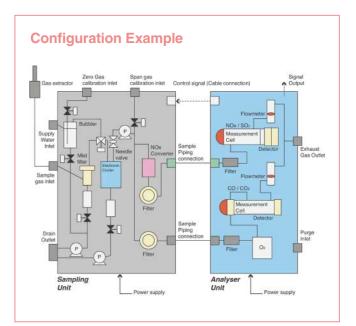
Turnkey portable system including fully automatic sample handling For exhaust gas measurement, biogas and R&D

Portable analyser system

Modular System

ZSVF

Analysis unit and sampling unit can be separated for ease of move and installation


Sampling unit

Features

- Monitoring of combustion gas, biogas, etc.
- Integrated NOx converter
- No installation work
- Interactive interface
- Easy maintenance, automatic condensate removal

Major applications

- Tests for R&D such as combustion, biogas generation, and plant photosynthesis tests
- Simple measurement for control of exhaust gas from business places
- Control and check of CA storage atmosphere
- Combustion exhaust gas measurement control
- Comparison with gas analysers installed at site and backup

Measurable components	NOX, SO2, CO2, CO, CH4, O2			
Principle	Single-beam NDIR + galvanic or paramagnetic O ₂ sensor			
	NOx: 0 500 5000 ppm			
	SO2: 0 500 ppm 1%			
Measurement range	CO2: 0 200 ppm 100%			
weasurement range	CO: 0 200 ppm 100%			
	CH4: 0 1000 ppm 100%			
	O2: 0 5/10/25%			
Repeatability	±0.5% FS			
Output signal	4–20 mA DC or 0–1 V DC Instantaneous value, O2 converted instantaneous value, O2 converted average value, CP calculation			
Communication	RS-232C Modbus®			
Power supply voltage	100–115 V AC or 200–240 V AC, 50/60 Hz			
Dimensions	Analysis unit: 365 (W) × 211 (H) × 514 (D) mm Sampling unit: 365 (W) × 377 (H) × 514 (D) mm			
Weight	Analysis unit: approx. 12 kg Sampling unit: approx. 18 kg			
Gas extractor (option)	Fixed type with flange, or unfixed type			

Laser Gas Analysers

Insertion type offers high-speed measurement Long-term stability and low maintenance

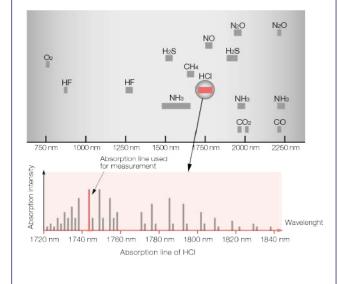
Transmitter

unit

Purge gas

Waste incinerators, district heating and industrial boilers, chemical plants

NH₃ HCI CO O₂ CO₂ CH₄


ZSS

Features

- Laser Technology: high precision
- Compact size
- Easy maintenance
- Fast response

Absorption spectrum

The analyser uses near infrared semiconductor laser and measures the change in absorption wavelength to determine the gas concentration.

Energy saving and low maintenance

Energy consumption \leq 80 VA

Maintenance work ≤ twice a year

With no need for sampling devices and preconditioning, consumable parts and maintenance work are greatly reduced.

No sampling involved	No preconditioning
No filter	No catalyst

Stack

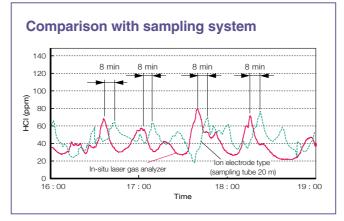
0.5 to 10m

Purge gas

Receiver

unit

Control unit


1104.6 m

Purge system reduces the risk of zero drift due to contamination

Fast response within 2 seconds

Laser beam

Compared to the ion electrode (sampling) method, the direct measurement provides remarkably faster response.

CO + O2 analyser available

Simultaneous measurement of CO and O₂ enables precise control of air-fuel ratio while reducing the cost of installation and maintenance.

Instrument air purge available

O₂ analyser for combustion control accepts instrument air purge.

Specifications

General

Principle	Laser				
Method	Cross-stack				
Measurable components and ranges	See the table below				
Light source	Near-infrared semiconductor laser				
Laser class	CLASS 1 (O2 analysers of high-temperature version and instrument air purge version fall under CLASS 3B)				
Power supply voltage	100-240 V AC, 50/60 Hz				
Power consumption	80 VA				
Calibration interval	every 6 months (depending on the operating environment)				
Display	Backlit LCD				
Display contents	Component, concentration (instantaneous value, average, O ₂ corrected instantaneous value, O ₂ corrected average value), alarm				
Weight	Receiver unit and transmitter unit: approx. 10 kg each, control unit: approx. 8 kg				
D	Receiver unit (400 × 180 × 155 mm)				
Dimensions $(D \times W \times H)$	Transmitter unit (400 × 240 × 160 mm)				
(D × W × H)	Control unit (137 × 255 × 440 mm)				
IP rating	IP65				

Performance

Response	\leq 4 s (\leq 2 s in high-speed version)			
Repeatability	±1.0% FS (depending on components and ranges) CO + O ₂ measurement: ±2% FS			
Linearity	$\pm 1.0\%$ FS (depending on components and ranges) CO + O2 measurement: $\pm 3\%$ FS			
Zero drift	±2.0% FS per 6 months (depending on component and range) CO + O ₂ measurement: ±4% FS per 6 months			
Interference effect	±2.0% FS			
Detection limit	1% of minimum range			

Measurable components and ranges

	Measurable compo	nents	Min. range*	Max. range*	Gas temperature	Purge gas	4th code
	HCI		10 ppm	5000 ppm	≤ 400°C		С
	NH3		15 ppm	5000 ppm	≤ 450°C		W
	CO (high range)		2.0 vol%	100 vol%	≤ 300°C		А
Single beam	CO (low range)		200 ppm	1 vol%	≤ 400°C	- Instrument air -	М
1 component	CO ₂		2.0 vol%	100 vol%	≤ 300°C] [G
analyser	CH4	CH4		100 vol%	≤ 300°C] [R
	O2		10 vol%	100 vol%	≤ 300°C	- N2 -	Р
	O2 (high temperature)		4 vol%	100 vol%	≤ 1200°C		Q
	O2 (instrument air purge)		25 vol%	100 vol%	400°C 1200°C	Instrument air	Т
Single beam 2 components analyser	CO + CO ₂		2.5 vol%	100 vol%	≤ 300°C	Instrument air	К
	ppm CO + O2 (instrument air purge)	CO	200 ppm	2 vol%	400°C 1200°C Instrument air		
Double beam 2 components analyser		O2	25 vol%	100 vol%		V	
	ppm CO + O2 (high temperature)	CO	200 ppm	2 vol%	400000		
		O2	5 vol%	50 vol%	— ≤ 1200°C		U
	CO	2 vol%	50 vol%		- N2	S	
	vol% CO + O2		10 vol%		100 vol%		

*The measurement ranges described above are for the optical path of 1 m.

Input/output signal

Analog output	4–20 mA DC or 1–5 V DC, 2 or 4 points Measured value and O ₂ corrected value. Switchable between instantaneous value and average value
Analog input	4–20 mA DC, 2 points Sample gas pressure, temperature, velocity, O2 concentration, water concentration, air purge pressure *Inputs are used for compensating concentration, O2 correction, and alarm output.
Digital output	Relay contact output, 6 points Low light transmission, H/L limit alarm, analyser error, during calibration / during hold, power interruption, environmental error
Digital input (option)	Voltage input received by photocoupler, 3 points Average value reset, switchover between instantaneous value and moving average value, remote hold

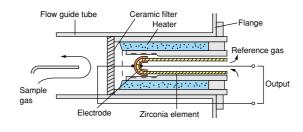
Installation environment

Ambient temperature	 −20 to +55°C (Receiver unit, transmitter unit) −5 to +45°C (Control unit) 				
Ambient humidity	≤ 90% RH				
Optical path length	0.5 to 10 m (0.5 to 5 m in CO + O2 measurement)				
Standard flange	JIS10K, 50A,100A, DN50/PN10 or ANSI # 150 2B				
Purge gas	See the table below. Purge gas pressure: ≥ 0.3 MPa				
Purge gas flow rate	≥ 20 L/min				
Gas conditions	See the table below Moisture: ≤ 50 vol% (no condensation) Pressure: ±10 kPa (Consult us for pressure above the limit.) Dust: Standard version: ≤ 5 g/m ³ (N) Dust resistant version: ≤ 20 g/m ³ (N)				

Zirconia Oxygen Analysers

Simple, fast, robust and QAL1 certified

Ideal for combustion control in boilers, incinerators and furnaces Lowering CO₂, SOx, and NOx emissions while saving energy

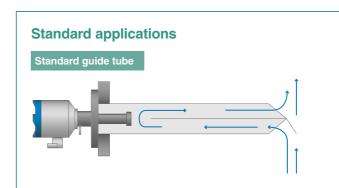

Features

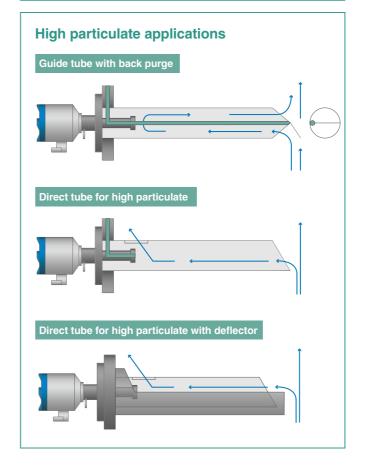
Longest lifetime sensor

- Easily replaceable zirconia element reducing maintenance cost
- User friendly
- No instrument air required
- No Flue gas extraction required
- Fast response (4–7 seconds)
- Predictive and advanced diagnostics IP66 or IP67 enclosure
- RS-485 or HART communication

Principle

The analyser makes use of the property of zirconium oxide that conducts oxygen ion when heated. The analyser can obtain O₂ concentration by sensing the electromotive force generated by the difference of O2 concentration between air and the sample gas.

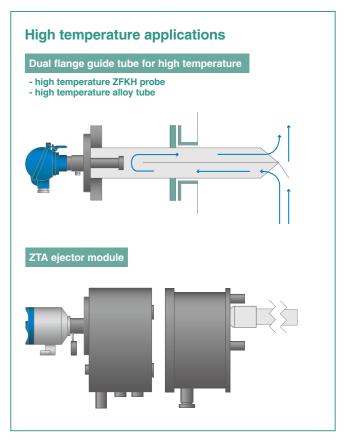


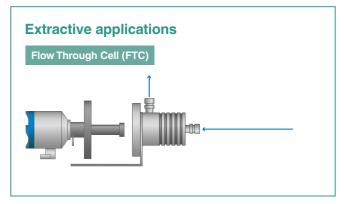

Easily replaceable zirconia element

Specifications

Target	O2 in incombustible gas			
Principle	Insertion type zirconia sensor			
Range	0 2 50 vol% O2 (user configurable)			
Repeatability	±0.5% FS			
Linearity	±2% FS			
Response time (for 90%)	4 s 7 s			
Output signal	4-20 mA DC or 0-1 V DC			
Contact output	6 points, SPST-NO contact: H/L limit alarm, during mainten nance, during blowdown, during calibration, analyser error			
Contact input	3 volt-free contacts: selection from 7 items			
Display	Backlit LCD			
Communication	RS-485 Modbus [®] or HART			
Optional functions	Combustion efficiency display, blowdown, auto calibration, selector valve, flowmeter			
Safety functions	Detecting a break of the thermocouple for heater control in the sensor unit, the analyser stop the power supply to the detector The power supply to the detector may also be stopped by external input in an emergency The key lock function prevents operational errors			
Converter installation	Panel mount or pipe mount			
Cable length between converter and detector	≤ 100m			
Power supply voltage	100–120 V AC or 200–240 V AC, 50/60 Hz			

Model selection


Select the required modules combination according to the process conditions using below table.


Process conditions		Modules selection					
Application example	Temperature	Dust	Tube material	backpurge	Tube type	Tube code (*)	Detector type
Gas boiler	≤ 600 °C	≤ 0,1 g/Nm3		No	Standard guide tube	631B562-0#	
Biomass, Oil, Coal boiler /Incinerator		≤ 5 g/Nm3	SS316	Yes	Guide tube with backpurge	631B563-0#	ZFK8
	≤ 600 °C	≤ 25 g/Nm3		Yes	Direct tube for high particulate	631B673-0#	
		l≤ 25 g/14ms		Yes	Direct tube for high particulate with deflector	631B677-0#	
		≤ 0,2 g/Nm3	- SS310	No	Dual flange guide tube for high temperature	631B685-0#	ZFKH
	≤ 1000 °C	≤ 5 g/Nm3		Yes	Dual flange guide tube for high temperature with backpurge	631B684-0#	
		≤ 25 g/Nm3		Yes	Direct tube for high temperature and high particulate	631B675-0#	
				Yes	Direct tube for high temperature and high particulate with deflector	631B678-0#	
Incinerator /	≤ 1300 °C	≤ 0,2 g/Nm3	Kanthal	No	Guide tube for very high temperature	631B682-0#	
Furnace /	≤ 1300 °C ≤ 5 g/Nm3	Kanimai	Yes	Guide tube for very high temperature with backpurge	631B683-0#		
Glass /	≤ 800 °C	- < () 5 a/Nm3	SS310	Yes	ZTA ejector module	ZTA2	751/0
Metal industry	≤ 1500 °C		Yes	ZTA ejector module	ZTA1	ZFK8	
Notes	(*) The last digit of the tube code is dedicated to the tube insertion length as per below list:						
	'1' = 300mm	'2' = 500mm	'3' = 750mm	'4'=1000mm	'Z' = special length -> consult Fuji		

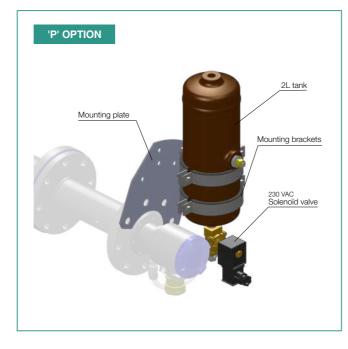
(1) In case of very humid gas, keep the flange hot enough to prevent condensation

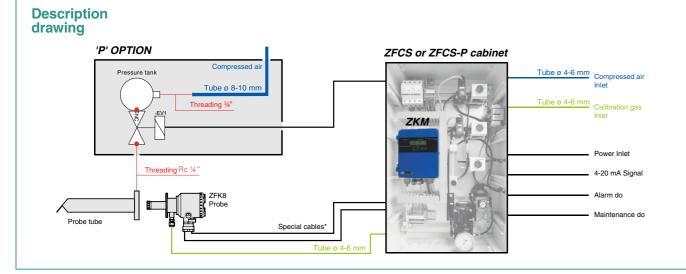
(2) In case of highly corrosive gas, please consult Fuji for special materials (3) If the gas flow is lower than 5 m/s, use ejector module instead of flow tube

30

Automatic calibration and back-purge module

02 (€


Features


- Integration & additional protection of the ZKM controller
 ZKM functions (see ZKM/ZFK8 datasheet)
 Automatic calibration and back-purge (through ZKM)
- Manual operations also possible through press buttons
- Pressure control of the function gases
- Glass front door for a direct view
- P' option: solenoid valve and pressure tank mounted on the probe for a powerful back-purge

Notes

- The ZFCS cabinet supply scope does not include the ZKM controller, the ZFK8 probe, the probe tube, or the connection cables. These items may be purchased separately.
- The ZKM itself should be equiped with the automatic calibration and back-purge options.

Flameproof type for hazardous applications

Detector ZFKE

Direct tube for high particulate

Features

Easily replaceable zirconia element

Fast response (4–7 seconds)

TIIS and NEPSI certified

Specifications

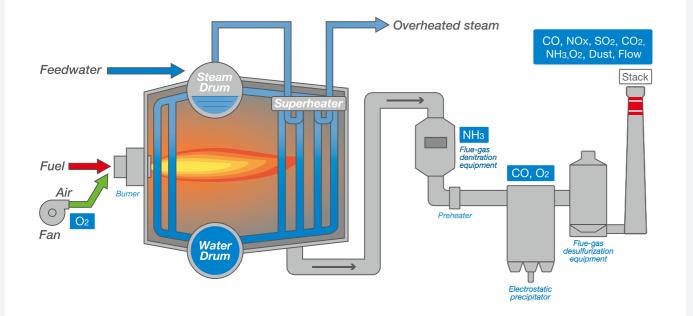
Target	O2 in incombustible gas	
Principle	Insertion type zirconia sensor	
Range	0 2 50 vol% O2 (user configurable)	
Repeatability	±0.5% FS	
Linearity	±2% FS	
Response time (for 90%)	4 s 7 s	
Output signal	4–20 mA DC or 0–1 V DC	
Contact output	6 points, SPST-NO contact: H/L limit alarm, during maintenance, during blowdown, during calibration, analyser error	
Contact input	3 volt-free contacts: selection from 7 items	
Display	Backlit LCD	
Communication	RS-485 (Modbus)	
Optional functions	Combustion efficiency display, blowdown, auto calibration, selector valve, flowmeter	
Converter installation	Panel mount	
Cable length between converter and detector	≤ 100 m	
Power supply voltage	100–120 V AC or 200–240 V AC, 50/60 Hz	

Specifications Dimensions 90 x 475 x 210

Dimensions	90 x 475 x 210 mm					
Materials	Polyester glass-fibered cabinet with glass front door					
Weight	Approx. 18 Kg					
Colour	Grey RAL7035					
Protection class	IP 55					
Temperature	Operation: 0 to 50 °C Storage: -20 to 70 °C					
Flue gas temperature	See analyser specifications					
Power mains	230 VAC / 50 Hz (other options available)					
Startup power consumption	240 VA					
Nominal consumption	125 VA					
Compressed air pressure	5 bar min / 17 bar max					
Mounting type	Wall-mounted, delivered with 4 mounting brackets					
Gas connections	 2 inlets for soft tube connection (ø6 mm) (compressed air, calibration gas) 1 (ZFCS-P*) or 2 (ZFCS) outlets for soft tube connection (ø6 mm) (back-purge air, calibration gas) * With option 'P', the compressed air is directly offered to the solenoid valve mounted on the probe flange. 					

ATEX version for hazardous applications

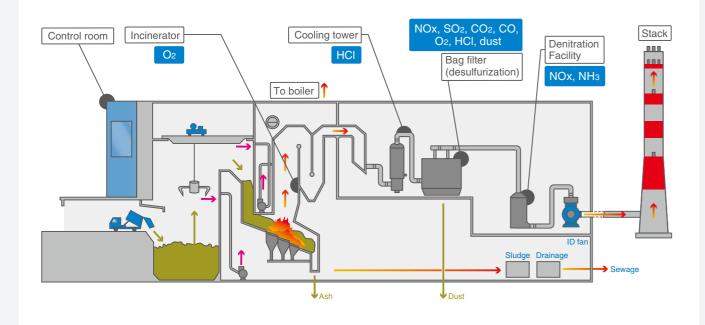
Features


- Field-replaceable Flame-arrester
- Compact & Light Design
- Fast response (4–7 seconds)
- Excellent accuracy and reliability
- Remote electronics and calibration
- ATEX/IECEx Zone1 IIB+H2 T3 Gb certified probe

•				
Target	O2 in incombustible gas Refinery process heaters Petrochemical reactor furnaces Industrial large scale boilers			
Principle	Insertion type zirconia sensor			
Probe Certification	II2G Ex d IIB+H2 T3 Gb (Ta :-20°C to +60°C) LCIE 13 ATEX 3045X IECEx LCIE 13.0027X			
Insertion type zirconia sensor	II2G Ex d IIC T5 Gb (Ta :-20°C to +55°C) LCIE 13 ATEX 3066X			
Range	0 2 50 vol% O2 (user configurable)			
Measure gas pressure	-3 to +3kPa (-306 to +306mmH2O)			
Repeatability	±0.5% FS			
Linearity	±2% FS			
Response time (for 90%)	4 s 7 s			
Output signal	4–20 mA DC or 0–1 V DC			
Contact output	6 points, SPST-NO contact: H/L limit alarm, during maintenance, during blowdown, during calibration, analyser error			
Contact input	3 volt-free contacts: selection from 7 items			
Maintenance functions	Blow Off, Auto-calibration, Output contacts, Output Hold			
Display	Backlit LCD			
Communication	RS-485 (Modbus)			
Optional functions	Combustion efficiency display, blowdown, auto calibration, selector valve, flowmeter			
Converter installation	Panel mount			
Cable length between converter and detector	≤ 50 m			
Power supply voltage	100–120 V AC or 200–240 V AC, 50/60 Hz			

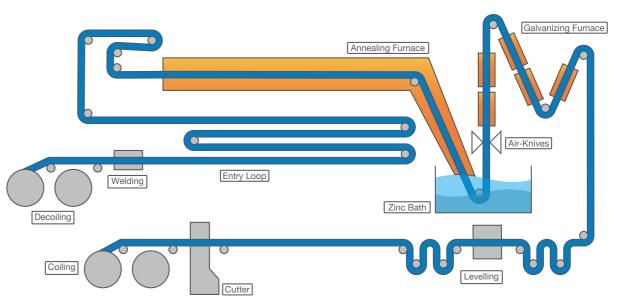
Applications examples

Large Industrial Boilers


Fuji Electric gas analysers enable optimal combustion of control boilers, which leads to reduction of both the fuel cost and atmospheric pollution. Fuji Electric CEMS also allow a rigorous control of the emitted gases.

Waste Incineration Plants

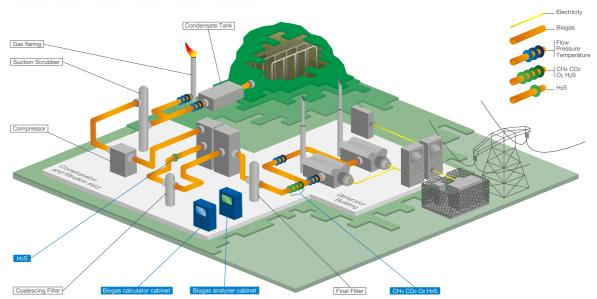
Fuji Electric gas analysers are used to optimize the combustion in waste incinerator facilities. And with fast and robust monitoring of the flue gas treatment system, they reduce the emissions while lowering significantly the operating costs of the plant.


Metal industry example: Galvanizing Line Process

Fuji Electric gas analysers are used for a wide range of metal industrial processes such as converter Furnaces and Heat Treatment. They also control the Continuous Galvanizing Lines (CGL) with multiple sampling points before, during and after the furnaces.

H₂O NOx NH₃ H2

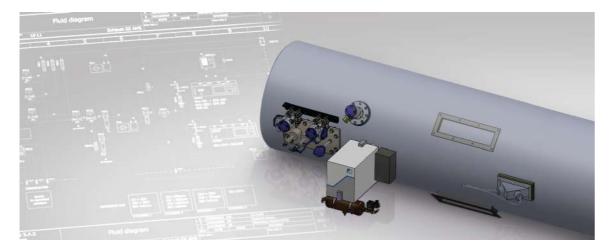
3


4

Biogas Waste to Energy Plants

Fuji Electric instruments and gas analysers play an important role in the renewable energy production worldwide. Metering the energy generated by the biogas plants is one example. Measuring the biogas composition also allows to optimize the process and reduce the operation costs.

CH₄ O2 Flow CO2


Engineering & Services

System Solutions Engineering

- Simple analyser panel
- Stand alone or wall-mounted cabinet
- Indoor or outdoor analytical skid
- Tropicalized and air-conditioned shelter

Fuji Electric France Technical Center provide state-of-the-art analytical solutions. Combining the most reliable technologies with tailor made automation and software solutions, Fuji Electric designs analyser systems adapted to each customer application.

On-site Service

- Systems commissioning
- Field service support
- Preventive maintenance
- Field expertise, diagnoses and repair

Fuji Electric engineers, as well as long term partners, are proven experts who daily visit our customers' facilities according to their expectations and provide technical support, maintenance and calibration all along the analyser system life cycle.

Service Centers

- Spare parts local stock & fast deliveries
- Fuji Electric repair centers
- Remote technical support through chat, phone or video calls
- Gas analyser rentals

Fuji Electric France Technical Center includes a wide stock of spare parts necessary for any maintenance or repair of the local installed base. The local availability of spare parts, combined with Fuji Electric repair engineers as well as authorized and highly skilled partners, ensure quick and efficient operations, minimizing down time for our customers process.

Training

- End-user technical operation & maintenance training
- Distributor operation, maintenance and repair expert training
- Products, technologies and applications training
- Environmental regulations technical training

Every day, a Fuji Electric authorized trainer is instructing users, distributors or highest benefit for our customers.

- integrators how to use, maintain, repair, adjust our gas analyser systems. Together with the highest quality products and solutions, the deep training of related staff leads to the

Quality & Environment

Quality

Fuji Electric has proven over almost 100 years a continuous care for its organizations Quality Assurance. Fuji Electric France subsidiary company itself is deeply engaged in a continuous improvement process according to the ISO 9001 and ISO 14001 international reference bases.

Environment

The environmental care at Fuji Electric France is in addition somehow natural as the Gas Analyser products ranges is mostly designed for our customers wishing to reduce energy consumption, optimize energy production, and control atmospheric emissions footprint.

QUALITY MANAGEMENT

ISO 9001: 2015 Quality Management System

METROLOGICAL PERFORMANCE

EN15267: 2014 Continuous Emission Monitoring System **QAL1** Certification

Fuji CEMS are tested, certified and continuously controlled and audited according to the EN15267.

ACCREDITATIONS

Explosive atmospheres

- ATEX (Europe)
- TIIS / NEPSI (Asia)
- IECEx (Global)

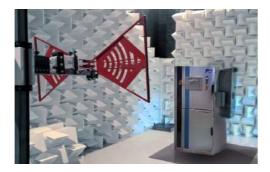
Product conformity

- CE Mark (Europe)
- Metrological certificates (Russia)

Environmental approvals

- QAL1
- Marine type approval

ENVIRONMENTAL CARE



ISO 14001: 2015 Environmental Management System

MARINE TYPE APPROVAL

IMO MARPOL MEPC guidelines certification of Fuji Electric Marine Emissions Gas Analysers

Both multigas marine emission monitoring system S-Keeper 7[™] and dual Laser ZQS marine gas analyser are tested and certified.

CALIBRATION

All our gas analysers may be provided with a multipoint calibration record from Fuji Electric metrology laboratory in Clermont-Ferrand (France) factory.

Satisfactory products for customers will be delivered under strict quality control.

Japanese Measurement Law: **Designated Manufacturing** Business Operator (No. 391901)

ISO 14001 Certificate No. EC97J1059 **Tokyo Factory**

■ ISO 14001 Certificate No. 2014/59264.6 Fuji Electric France S.A.S.

ISO 9001 Certificate No. 1997/8402.16 Fuji Electric France S.A.S.

Find out more about our gas analysers.

Gas Analysers - Fuji Electric https://www.fujielectric.fr/en/gas-analysis

ISO 9001 Certificate No. JMI-0122 Tokyo Factory

AFNOR Management System Certification

FUJI ELECTRIC FRANCE S.A.S.

46, rue Georges Besse - ZI du Brézet 63039 Clermont-Ferrand Cedex 2 - France Tél. France 04 73 98 26 98 - Fax. 04 73 98 26 99 Tel. international +33 4 73 98 26 98 - Fax. +33 4 73 98 26 99 Email : sales.dpt@fujielectric.fr Web : www.fujielectric.fr

Fuji Electric cannot be held responsible for any errors in our catalogues, brochures or other printed media. Fuji Electric reserves the right to modify its products without notice. This also applies to the products ordered, if the modifications do not alter the specifications substantially. The registered marks and names which appear in this document are the property of their respective depositors. All rights reserved.